หาค่า x, y
x=0
y=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+3y=6,4x+5y=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y+6
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y+6\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y+3
คูณ \frac{1}{2} ด้วย -3y+6
4\left(-\frac{3}{2}y+3\right)+5y=10
ทดแทน -\frac{3y}{2}+3 สำหรับ x ในอีกสมการหนึ่ง 4x+5y=10
-6y+12+5y=10
คูณ 4 ด้วย -\frac{3y}{2}+3
-y+12=10
เพิ่ม -6y ไปยัง 5y
-y=-2
ลบ 12 จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างด้วย -1
x=-\frac{3}{2}\times 2+3
ทดแทน 2 สำหรับ y ใน x=-\frac{3}{2}y+3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3+3
คูณ -\frac{3}{2} ด้วย 2
x=0
เพิ่ม 3 ไปยัง -3
x=0,y=2
ระบบถูกแก้แล้วในขณะนี้
2x+3y=6,4x+5y=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\4&5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 4}&-\frac{3}{2\times 5-3\times 4}\\-\frac{4}{2\times 5-3\times 4}&\frac{2}{2\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{3}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 6+\frac{3}{2}\times 10\\2\times 6-10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=0,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=6,4x+5y=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\times 2x+4\times 3y=4\times 6,2\times 4x+2\times 5y=2\times 10
เพื่อทำให้ 2x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
8x+12y=24,8x+10y=20
ทำให้ง่ายขึ้น
8x-8x+12y-10y=24-20
ลบ 8x+10y=20 จาก 8x+12y=24 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
12y-10y=24-20
เพิ่ม 8x ไปยัง -8x ตัดพจน์ 8x และ -8x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
2y=24-20
เพิ่ม 12y ไปยัง -10y
2y=4
เพิ่ม 24 ไปยัง -20
y=2
หารทั้งสองข้างด้วย 2
4x+5\times 2=10
ทดแทน 2 สำหรับ y ใน 4x+5y=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x+10=10
คูณ 5 ด้วย 2
4x=0
ลบ 10 จากทั้งสองข้างของสมการ
x=0
หารทั้งสองข้างด้วย 4
x=0,y=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}