หาค่า x, y
x=14
y=-8
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+3y=4,3x+4y=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y+4
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y+4\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y+2
คูณ \frac{1}{2} ด้วย -3y+4
3\left(-\frac{3}{2}y+2\right)+4y=10
ทดแทน -\frac{3y}{2}+2 สำหรับ x ในอีกสมการหนึ่ง 3x+4y=10
-\frac{9}{2}y+6+4y=10
คูณ 3 ด้วย -\frac{3y}{2}+2
-\frac{1}{2}y+6=10
เพิ่ม -\frac{9y}{2} ไปยัง 4y
-\frac{1}{2}y=4
ลบ 6 จากทั้งสองข้างของสมการ
y=-8
คูณทั้งสองข้างด้วย -2
x=-\frac{3}{2}\left(-8\right)+2
ทดแทน -8 สำหรับ y ใน x=-\frac{3}{2}y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=12+2
คูณ -\frac{3}{2} ด้วย -8
x=14
เพิ่ม 2 ไปยัง 12
x=14,y=-8
ระบบถูกแก้แล้วในขณะนี้
2x+3y=4,3x+4y=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\3&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 4+3\times 10\\3\times 4-2\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=14,y=-8
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=4,3x+4y=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3\times 3y=3\times 4,2\times 3x+2\times 4y=2\times 10
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x+9y=12,6x+8y=20
ทำให้ง่ายขึ้น
6x-6x+9y-8y=12-20
ลบ 6x+8y=20 จาก 6x+9y=12 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
9y-8y=12-20
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
y=12-20
เพิ่ม 9y ไปยัง -8y
y=-8
เพิ่ม 12 ไปยัง -20
3x+4\left(-8\right)=10
ทดแทน -8 สำหรับ y ใน 3x+4y=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x-32=10
คูณ 4 ด้วย -8
3x=42
เพิ่ม 32 ไปยังทั้งสองข้างของสมการ
x=14
หารทั้งสองข้างด้วย 3
x=14,y=-8
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}