หาค่า x, y
x=3
y=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+3y=12,3x+2y=13
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=12
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y+12
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y+12\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y+6
คูณ \frac{1}{2} ด้วย -3y+12
3\left(-\frac{3}{2}y+6\right)+2y=13
ทดแทน -\frac{3y}{2}+6 สำหรับ x ในอีกสมการหนึ่ง 3x+2y=13
-\frac{9}{2}y+18+2y=13
คูณ 3 ด้วย -\frac{3y}{2}+6
-\frac{5}{2}y+18=13
เพิ่ม -\frac{9y}{2} ไปยัง 2y
-\frac{5}{2}y=-5
ลบ 18 จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างของสมการด้วย -\frac{5}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{3}{2}\times 2+6
ทดแทน 2 สำหรับ y ใน x=-\frac{3}{2}y+6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3+6
คูณ -\frac{3}{2} ด้วย 2
x=3
เพิ่ม 6 ไปยัง -3
x=3,y=2
ระบบถูกแก้แล้วในขณะนี้
2x+3y=12,3x+2y=13
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\3&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 12+\frac{3}{5}\times 13\\\frac{3}{5}\times 12-\frac{2}{5}\times 13\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=12,3x+2y=13
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3\times 3y=3\times 12,2\times 3x+2\times 2y=2\times 13
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x+9y=36,6x+4y=26
ทำให้ง่ายขึ้น
6x-6x+9y-4y=36-26
ลบ 6x+4y=26 จาก 6x+9y=36 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
9y-4y=36-26
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=36-26
เพิ่ม 9y ไปยัง -4y
5y=10
เพิ่ม 36 ไปยัง -26
y=2
หารทั้งสองข้างด้วย 5
3x+2\times 2=13
ทดแทน 2 สำหรับ y ใน 3x+2y=13 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x+4=13
คูณ 2 ด้วย 2
3x=9
ลบ 4 จากทั้งสองข้างของสมการ
x=3
หารทั้งสองข้างด้วย 3
x=3,y=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}