ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+2y=6,x-3y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+2y=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-2y+6
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-2y+6\right)
หารทั้งสองข้างด้วย 2
x=-y+3
คูณ \frac{1}{2} ด้วย -2y+6
-y+3-3y=-1
ทดแทน -y+3 สำหรับ x ในอีกสมการหนึ่ง x-3y=-1
-4y+3=-1
เพิ่ม -y ไปยัง -3y
-4y=-4
ลบ 3 จากทั้งสองข้างของสมการ
y=1
หารทั้งสองข้างด้วย -4
x=-1+3
ทดแทน 1 สำหรับ y ใน x=-y+3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2
เพิ่ม 3 ไปยัง -1
x=2,y=1
ระบบถูกแก้แล้วในขณะนี้
2x+2y=6,x-3y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&2\\1&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-2}&-\frac{2}{2\left(-3\right)-2}\\-\frac{1}{2\left(-3\right)-2}&\frac{2}{2\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{4}\\\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 6+\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 6-\frac{1}{4}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=1
แยกเมทริกซ์องค์ประกอบ x และ y
2x+2y=6,x-3y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+2y=6,2x+2\left(-3\right)y=2\left(-1\right)
เพื่อทำให้ 2x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
2x+2y=6,2x-6y=-2
ทำให้ง่ายขึ้น
2x-2x+2y+6y=6+2
ลบ 2x-6y=-2 จาก 2x+2y=6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y+6y=6+2
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
8y=6+2
เพิ่ม 2y ไปยัง 6y
8y=8
เพิ่ม 6 ไปยัง 2
y=1
หารทั้งสองข้างด้วย 8
x-3=-1
ทดแทน 1 สำหรับ y ใน x-3y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=2,y=1
ระบบถูกแก้แล้วในขณะนี้