ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+2y=0,3x-y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-2y
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-2\right)y
หารทั้งสองข้างด้วย 2
x=-y
คูณ \frac{1}{2} ด้วย -2y
3\left(-1\right)y-y=2
ทดแทน -y สำหรับ x ในอีกสมการหนึ่ง 3x-y=2
-3y-y=2
คูณ 3 ด้วย -y
-4y=2
เพิ่ม -3y ไปยัง -y
y=-\frac{1}{2}
หารทั้งสองข้างด้วย -4
x=-\left(-\frac{1}{2}\right)
ทดแทน -\frac{1}{2} สำหรับ y ใน x=-y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{1}{2}
คูณ -1 ด้วย -\frac{1}{2}
x=\frac{1}{2},y=-\frac{1}{2}
ระบบถูกแก้แล้วในขณะนี้
2x+2y=0,3x-y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&2\\3&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2\times 3}&-\frac{2}{2\left(-1\right)-2\times 3}\\-\frac{3}{2\left(-1\right)-2\times 3}&\frac{2}{2\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 2\\-\frac{1}{4}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{1}{2},y=-\frac{1}{2}
แยกเมทริกซ์องค์ประกอบ x และ y
2x+2y=0,3x-y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3\times 2y=0,2\times 3x+2\left(-1\right)y=2\times 2
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x+6y=0,6x-2y=4
ทำให้ง่ายขึ้น
6x-6x+6y+2y=-4
ลบ 6x-2y=4 จาก 6x+6y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
6y+2y=-4
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
8y=-4
เพิ่ม 6y ไปยัง 2y
y=-\frac{1}{2}
หารทั้งสองข้างด้วย 8
3x-\left(-\frac{1}{2}\right)=2
ทดแทน -\frac{1}{2} สำหรับ y ใน 3x-y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x=\frac{3}{2}
ลบ \frac{1}{2} จากทั้งสองข้างของสมการ
x=\frac{1}{2}
หารทั้งสองข้างด้วย 3
x=\frac{1}{2},y=-\frac{1}{2}
ระบบถูกแก้แล้วในขณะนี้