หาค่า x, y
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=\frac{1}{6}\approx 0.166666667
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x-3y=1,x+3y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-3y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=3y+1
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
3y+1+3y=2
ทดแทน 3y+1 สำหรับ x ในอีกสมการหนึ่ง x+3y=2
6y+1=2
เพิ่ม 3y ไปยัง 3y
6y=1
ลบ 1 จากทั้งสองข้างของสมการ
y=\frac{1}{6}
หารทั้งสองข้างด้วย 6
x=3\times \frac{1}{6}+1
ทดแทน \frac{1}{6} สำหรับ y ใน x=3y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{1}{2}+1
คูณ 3 ด้วย \frac{1}{6}
x=\frac{3}{2}
เพิ่ม 1 ไปยัง \frac{1}{2}
x=\frac{3}{2},y=\frac{1}{6}
ระบบถูกแก้แล้วในขณะนี้
x-3y=1,x+3y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-3\\1&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 2\\-\frac{1}{6}+\frac{1}{6}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{6}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{3}{2},y=\frac{1}{6}
แยกเมทริกซ์องค์ประกอบ x และ y
x-3y=1,x+3y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x-3y-3y=1-2
ลบ x+3y=2 จาก x-3y=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y-3y=1-2
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-6y=1-2
เพิ่ม -3y ไปยัง -3y
-6y=-1
เพิ่ม 1 ไปยัง -2
y=\frac{1}{6}
หารทั้งสองข้างด้วย -6
x+3\times \frac{1}{6}=2
ทดแทน \frac{1}{6} สำหรับ y ใน x+3y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x+\frac{1}{2}=2
คูณ 3 ด้วย \frac{1}{6}
x=\frac{3}{2}
ลบ \frac{1}{2} จากทั้งสองข้างของสมการ
x=\frac{3}{2},y=\frac{1}{6}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}