หาค่า x, y
x=-1
y=3
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-x-y=-2,9x-2y=-15
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-x-y=-2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-x=y-2
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=-\left(y-2\right)
หารทั้งสองข้างด้วย -1
x=-y+2
คูณ -1 ด้วย y-2
9\left(-y+2\right)-2y=-15
ทดแทน -y+2 สำหรับ x ในอีกสมการหนึ่ง 9x-2y=-15
-9y+18-2y=-15
คูณ 9 ด้วย -y+2
-11y+18=-15
เพิ่ม -9y ไปยัง -2y
-11y=-33
ลบ 18 จากทั้งสองข้างของสมการ
y=3
หารทั้งสองข้างด้วย -11
x=-3+2
ทดแทน 3 สำหรับ y ใน x=-y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-1
เพิ่ม 2 ไปยัง -3
x=-1,y=3
ระบบถูกแก้แล้วในขณะนี้
-x-y=-2,9x-2y=-15
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-15\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-9\right)}&-\frac{-1}{-\left(-2\right)-\left(-9\right)}\\-\frac{9}{-\left(-2\right)-\left(-9\right)}&-\frac{1}{-\left(-2\right)-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{1}{11}\\-\frac{9}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\left(-2\right)+\frac{1}{11}\left(-15\right)\\-\frac{9}{11}\left(-2\right)-\frac{1}{11}\left(-15\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-1,y=3
แยกเมทริกซ์องค์ประกอบ x และ y
-x-y=-2,9x-2y=-15
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
9\left(-1\right)x+9\left(-1\right)y=9\left(-2\right),-9x-\left(-2y\right)=-\left(-15\right)
เพื่อทำให้ -x และ 9x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 9 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -1
-9x-9y=-18,-9x+2y=15
ทำให้ง่ายขึ้น
-9x+9x-9y-2y=-18-15
ลบ -9x+2y=15 จาก -9x-9y=-18 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-9y-2y=-18-15
เพิ่ม -9x ไปยัง 9x ตัดพจน์ -9x และ 9x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-11y=-18-15
เพิ่ม -9y ไปยัง -2y
-11y=-33
เพิ่ม -18 ไปยัง -15
y=3
หารทั้งสองข้างด้วย -11
9x-2\times 3=-15
ทดแทน 3 สำหรับ y ใน 9x-2y=-15 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
9x-6=-15
คูณ -2 ด้วย 3
9x=-9
เพิ่ม 6 ไปยังทั้งสองข้างของสมการ
x=-1
หารทั้งสองข้างด้วย 9
x=-1,y=3
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}