หาค่า x, y
x=9
y=5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-4x+9y=9,x-3y=-6
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-4x+9y=9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-4x=-9y+9
ลบ 9y จากทั้งสองข้างของสมการ
x=-\frac{1}{4}\left(-9y+9\right)
หารทั้งสองข้างด้วย -4
x=\frac{9}{4}y-\frac{9}{4}
คูณ -\frac{1}{4} ด้วย -9y+9
\frac{9}{4}y-\frac{9}{4}-3y=-6
ทดแทน \frac{-9+9y}{4} สำหรับ x ในอีกสมการหนึ่ง x-3y=-6
-\frac{3}{4}y-\frac{9}{4}=-6
เพิ่ม \frac{9y}{4} ไปยัง -3y
-\frac{3}{4}y=-\frac{15}{4}
เพิ่ม \frac{9}{4} ไปยังทั้งสองข้างของสมการ
y=5
หารทั้งสองข้างของสมการด้วย -\frac{3}{4} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{9}{4}\times 5-\frac{9}{4}
ทดแทน 5 สำหรับ y ใน x=\frac{9}{4}y-\frac{9}{4} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{45-9}{4}
คูณ \frac{9}{4} ด้วย 5
x=9
เพิ่ม -\frac{9}{4} ไปยัง \frac{45}{4} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=9,y=5
ระบบถูกแก้แล้วในขณะนี้
-4x+9y=9,x-3y=-6
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-6\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-9}&-\frac{9}{-4\left(-3\right)-9}\\-\frac{1}{-4\left(-3\right)-9}&-\frac{4}{-4\left(-3\right)-9}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{3}&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-3\left(-6\right)\\-\frac{1}{3}\times 9-\frac{4}{3}\left(-6\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=9,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
-4x+9y=9,x-3y=-6
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-4x+9y=9,-4x-4\left(-3\right)y=-4\left(-6\right)
เพื่อทำให้ -4x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -4
-4x+9y=9,-4x+12y=24
ทำให้ง่ายขึ้น
-4x+4x+9y-12y=9-24
ลบ -4x+12y=24 จาก -4x+9y=9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
9y-12y=9-24
เพิ่ม -4x ไปยัง 4x ตัดพจน์ -4x และ 4x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-3y=9-24
เพิ่ม 9y ไปยัง -12y
-3y=-15
เพิ่ม 9 ไปยัง -24
y=5
หารทั้งสองข้างด้วย -3
x-3\times 5=-6
ทดแทน 5 สำหรับ y ใน x-3y=-6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x-15=-6
คูณ -3 ด้วย 5
x=9
เพิ่ม 15 ไปยังทั้งสองข้างของสมการ
x=9,y=5
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}