หาค่า x
x=3
x=4
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x^{2}-13x+12=\left(x-3\right)\times 2x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 3x-4 และรวมพจน์ที่เหมือนกัน
3x^{2}-13x+12=\left(2x-6\right)x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 2
3x^{2}-13x+12=2x^{2}-6x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x-6 ด้วย x
3x^{2}-13x+12-2x^{2}=-6x
ลบ 2x^{2} จากทั้งสองด้าน
x^{2}-13x+12=-6x
รวม 3x^{2} และ -2x^{2} เพื่อให้ได้รับ x^{2}
x^{2}-13x+12+6x=0
เพิ่ม 6x ไปทั้งสองด้าน
x^{2}-7x+12=0
รวม -13x และ 6x เพื่อให้ได้รับ -7x
a+b=-7 ab=12
เมื่อต้องการแก้สมการปัจจัย x^{2}-7x+12 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-12 -2,-6 -3,-4
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 12
-1-12=-13 -2-6=-8 -3-4=-7
คำนวณผลรวมสำหรับแต่ละคู่
a=-4 b=-3
โซลูชันเป็นคู่ที่จะให้ผลรวม -7
\left(x-4\right)\left(x-3\right)
เขียนนิพจน์แยกตัวประกอบใหม่ \left(x+a\right)\left(x+b\right) โดยใช้ค่าที่ได้รับ
x=4 x=3
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-4=0 และ x-3=0
3x^{2}-13x+12=\left(x-3\right)\times 2x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 3x-4 และรวมพจน์ที่เหมือนกัน
3x^{2}-13x+12=\left(2x-6\right)x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 2
3x^{2}-13x+12=2x^{2}-6x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x-6 ด้วย x
3x^{2}-13x+12-2x^{2}=-6x
ลบ 2x^{2} จากทั้งสองด้าน
x^{2}-13x+12=-6x
รวม 3x^{2} และ -2x^{2} เพื่อให้ได้รับ x^{2}
x^{2}-13x+12+6x=0
เพิ่ม 6x ไปทั้งสองด้าน
x^{2}-7x+12=0
รวม -13x และ 6x เพื่อให้ได้รับ -7x
a+b=-7 ab=1\times 12=12
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx+12 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-12 -2,-6 -3,-4
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 12
-1-12=-13 -2-6=-8 -3-4=-7
คำนวณผลรวมสำหรับแต่ละคู่
a=-4 b=-3
โซลูชันเป็นคู่ที่จะให้ผลรวม -7
\left(x^{2}-4x\right)+\left(-3x+12\right)
เขียน x^{2}-7x+12 ใหม่เป็น \left(x^{2}-4x\right)+\left(-3x+12\right)
x\left(x-4\right)-3\left(x-4\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -3 ใน
\left(x-4\right)\left(x-3\right)
แยกตัวประกอบของพจน์ร่วม x-4 โดยใช้คุณสมบัติการแจกแจง
x=4 x=3
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-4=0 และ x-3=0
3x^{2}-13x+12=\left(x-3\right)\times 2x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 3x-4 และรวมพจน์ที่เหมือนกัน
3x^{2}-13x+12=\left(2x-6\right)x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 2
3x^{2}-13x+12=2x^{2}-6x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x-6 ด้วย x
3x^{2}-13x+12-2x^{2}=-6x
ลบ 2x^{2} จากทั้งสองด้าน
x^{2}-13x+12=-6x
รวม 3x^{2} และ -2x^{2} เพื่อให้ได้รับ x^{2}
x^{2}-13x+12+6x=0
เพิ่ม 6x ไปทั้งสองด้าน
x^{2}-7x+12=0
รวม -13x และ 6x เพื่อให้ได้รับ -7x
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -7 แทน b และ 12 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
ยกกำลังสอง -7
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
คูณ -4 ด้วย 12
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
เพิ่ม 49 ไปยัง -48
x=\frac{-\left(-7\right)±1}{2}
หารากที่สองของ 1
x=\frac{7±1}{2}
ตรงข้ามกับ -7 คือ 7
x=\frac{8}{2}
ตอนนี้ แก้สมการ x=\frac{7±1}{2} เมื่อ ± เป็นบวก เพิ่ม 7 ไปยัง 1
x=4
หาร 8 ด้วย 2
x=\frac{6}{2}
ตอนนี้ แก้สมการ x=\frac{7±1}{2} เมื่อ ± เป็นลบ ลบ 1 จาก 7
x=3
หาร 6 ด้วย 2
x=4 x=3
สมการได้รับการแก้ไขแล้ว
3x^{2}-13x+12=\left(x-3\right)\times 2x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 3x-4 และรวมพจน์ที่เหมือนกัน
3x^{2}-13x+12=\left(2x-6\right)x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-3 ด้วย 2
3x^{2}-13x+12=2x^{2}-6x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x-6 ด้วย x
3x^{2}-13x+12-2x^{2}=-6x
ลบ 2x^{2} จากทั้งสองด้าน
x^{2}-13x+12=-6x
รวม 3x^{2} และ -2x^{2} เพื่อให้ได้รับ x^{2}
x^{2}-13x+12+6x=0
เพิ่ม 6x ไปทั้งสองด้าน
x^{2}-7x+12=0
รวม -13x และ 6x เพื่อให้ได้รับ -7x
x^{2}-7x=-12
ลบ 12 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
หาร -7 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{7}{2} จากนั้นเพิ่มกำลังสองของ -\frac{7}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
ยกกำลังสอง -\frac{7}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
เพิ่ม -12 ไปยัง \frac{49}{4}
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
ตัวประกอบx^{2}-7x+\frac{49}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
ทำให้ง่ายขึ้น
x=4 x=3
เพิ่ม \frac{7}{2} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}