ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2+y+x=0
พิจารณาสมการแรก เพิ่ม x ไปทั้งสองด้าน
y+x=-2
ลบ 2 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
-10+y-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-x=10
เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
y+x=-2,y-x=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y+x=-2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=-x-2
ลบ x จากทั้งสองข้างของสมการ
-x-2-x=10
ทดแทน -x-2 สำหรับ y ในอีกสมการหนึ่ง y-x=10
-2x-2=10
เพิ่ม -x ไปยัง -x
-2x=12
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=-6
หารทั้งสองข้างด้วย -2
y=-\left(-6\right)-2
ทดแทน -6 สำหรับ x ใน y=-x-2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=6-2
คูณ -1 ด้วย -6
y=4
เพิ่ม -2 ไปยัง 6
y=4,x=-6
ระบบถูกแก้แล้วในขณะนี้
2+y+x=0
พิจารณาสมการแรก เพิ่ม x ไปทั้งสองด้าน
y+x=-2
ลบ 2 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
-10+y-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-x=10
เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
y+x=-2,y-x=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 10\\\frac{1}{2}\left(-2\right)-\frac{1}{2}\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=4,x=-6
แยกเมทริกซ์องค์ประกอบ y และ x
2+y+x=0
พิจารณาสมการแรก เพิ่ม x ไปทั้งสองด้าน
y+x=-2
ลบ 2 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
-10+y-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-x=10
เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
y+x=-2,y-x=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y+x+x=-2-10
ลบ y-x=10 จาก y+x=-2 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
x+x=-2-10
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
2x=-2-10
เพิ่ม x ไปยัง x
2x=-12
เพิ่ม -2 ไปยัง -10
x=-6
หารทั้งสองข้างด้วย 2
y-\left(-6\right)=10
ทดแทน -6 สำหรับ x ใน y-x=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y+6=10
คูณ -1 ด้วย -6
y=4
ลบ 6 จากทั้งสองข้างของสมการ
y=4,x=-6
ระบบถูกแก้แล้วในขณะนี้