ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x-y=-4
พิจารณาสมการแรก คูณทั้งสองข้างของสมการด้วย 4
x-y=-4,x+4y=-9
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=-4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y-4
เพิ่ม y ไปยังทั้งสองข้างของสมการ
y-4+4y=-9
ทดแทน y-4 สำหรับ x ในอีกสมการหนึ่ง x+4y=-9
5y-4=-9
เพิ่ม y ไปยัง 4y
5y=-5
เพิ่ม 4 ไปยังทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างด้วย 5
x=-1-4
ทดแทน -1 สำหรับ y ใน x=y-4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-5
เพิ่ม -4 ไปยัง -1
x=-5,y=-1
ระบบถูกแก้แล้วในขณะนี้
x-y=-4
พิจารณาสมการแรก คูณทั้งสองข้างของสมการด้วย 4
x-y=-4,x+4y=-9
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-9\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\1&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-1\right)}&-\frac{-1}{4-\left(-1\right)}\\-\frac{1}{4-\left(-1\right)}&\frac{1}{4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\\-\frac{1}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-5,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
x-y=-4
พิจารณาสมการแรก คูณทั้งสองข้างของสมการด้วย 4
x-y=-4,x+4y=-9
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x-y-4y=-4+9
ลบ x+4y=-9 จาก x-y=-4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-y-4y=-4+9
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5y=-4+9
เพิ่ม -y ไปยัง -4y
-5y=5
เพิ่ม -4 ไปยัง 9
y=-1
หารทั้งสองข้างด้วย -5
x+4\left(-1\right)=-9
ทดแทน -1 สำหรับ y ใน x+4y=-9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x-4=-9
คูณ 4 ด้วย -1
x=-5
เพิ่ม 4 ไปยังทั้งสองข้างของสมการ
x=-5,y=-1
ระบบถูกแก้แล้วในขณะนี้