หาค่า y, x
x=2
y=-5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-x=-7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y+3x=1,y-x=-7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y+3x=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=-3x+1
ลบ 3x จากทั้งสองข้างของสมการ
-3x+1-x=-7
ทดแทน -3x+1 สำหรับ y ในอีกสมการหนึ่ง y-x=-7
-4x+1=-7
เพิ่ม -3x ไปยัง -x
-4x=-8
ลบ 1 จากทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย -4
y=-3\times 2+1
ทดแทน 2 สำหรับ x ใน y=-3x+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-6+1
คูณ -3 ด้วย 2
y=-5
เพิ่ม 1 ไปยัง -6
y=-5,x=2
ระบบถูกแก้แล้วในขณะนี้
y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-x=-7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y+3x=1,y-x=-7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1&3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&3\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{3}{-1-3}\\-\frac{1}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}1\\-7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\-7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}+\frac{3}{4}\left(-7\right)\\\frac{1}{4}-\frac{1}{4}\left(-7\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-5,x=2
แยกเมทริกซ์องค์ประกอบ y และ x
y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-x=-7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y+3x=1,y-x=-7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y+3x+x=1+7
ลบ y-x=-7 จาก y+3x=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x+x=1+7
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
4x=1+7
เพิ่ม 3x ไปยัง x
4x=8
เพิ่ม 1 ไปยัง 7
x=2
หารทั้งสองข้างด้วย 4
y-2=-7
ทดแทน 2 สำหรับ x ใน y-x=-7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-5
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
y=-5,x=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}