หาค่า x, y
x=-4
y=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x=2y-8
พิจารณาสมการแรก ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-4
2y-8+y=-2
ทดแทน -8+2y สำหรับ x ในอีกสมการหนึ่ง x+y=-2
3y-8=-2
เพิ่ม 2y ไปยัง y
3y=6
เพิ่ม 8 ไปยังทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างด้วย 3
x=2\times 2-8
ทดแทน 2 สำหรับ y ใน x=2y-8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=4-8
คูณ 2 ด้วย 2
x=-4
เพิ่ม -8 ไปยัง 4
x=-4,y=2
ระบบถูกแก้แล้วในขณะนี้
x=2y-8
พิจารณาสมการแรก ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-4
x-2y=-8
ลบ 2y จากทั้งสองด้าน
y+x=3-5
พิจารณาสมการที่สอง ลบ 5 จากทั้งสองด้าน
y+x=-2
ลบ 5 จาก 3 เพื่อรับ -2
x-2y=-8,x+y=-2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-2\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-8\right)+\frac{2}{3}\left(-2\right)\\-\frac{1}{3}\left(-8\right)+\frac{1}{3}\left(-2\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-4,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
x=2y-8
พิจารณาสมการแรก ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-4
x-2y=-8
ลบ 2y จากทั้งสองด้าน
y+x=3-5
พิจารณาสมการที่สอง ลบ 5 จากทั้งสองด้าน
y+x=-2
ลบ 5 จาก 3 เพื่อรับ -2
x-2y=-8,x+y=-2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x-2y-y=-8+2
ลบ x+y=-2 จาก x-2y=-8 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2y-y=-8+2
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-3y=-8+2
เพิ่ม -2y ไปยัง -y
-3y=-6
เพิ่ม -8 ไปยัง 2
y=2
หารทั้งสองข้างด้วย -3
x+2=-2
ทดแทน 2 สำหรับ y ใน x+y=-2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-4
ลบ 2 จากทั้งสองข้างของสมการ
x=-4,y=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}