หาค่า x, y
x = \frac{1683}{38} = 44\frac{11}{38} \approx 44.289473684
y = \frac{749}{38} = 19\frac{27}{38} \approx 19.710526316
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+y=64,12x-26y=19
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=64
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y+64
ลบ y จากทั้งสองข้างของสมการ
12\left(-y+64\right)-26y=19
ทดแทน -y+64 สำหรับ x ในอีกสมการหนึ่ง 12x-26y=19
-12y+768-26y=19
คูณ 12 ด้วย -y+64
-38y+768=19
เพิ่ม -12y ไปยัง -26y
-38y=-749
ลบ 768 จากทั้งสองข้างของสมการ
y=\frac{749}{38}
หารทั้งสองข้างด้วย -38
x=-\frac{749}{38}+64
ทดแทน \frac{749}{38} สำหรับ y ใน x=-y+64 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{1683}{38}
เพิ่ม 64 ไปยัง -\frac{749}{38}
x=\frac{1683}{38},y=\frac{749}{38}
ระบบถูกแก้แล้วในขณะนี้
x+y=64,12x-26y=19
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\12&-26\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{26}{-26-12}&-\frac{1}{-26-12}\\-\frac{12}{-26-12}&\frac{1}{-26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{1}{38}\\\frac{6}{19}&-\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{1}{38}\times 19\\\frac{6}{19}\times 64-\frac{1}{38}\times 19\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\\frac{749}{38}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{1683}{38},y=\frac{749}{38}
แยกเมทริกซ์องค์ประกอบ x และ y
x+y=64,12x-26y=19
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
12x+12y=12\times 64,12x-26y=19
เพื่อทำให้ x และ 12x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 12 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
12x+12y=768,12x-26y=19
ทำให้ง่ายขึ้น
12x-12x+12y+26y=768-19
ลบ 12x-26y=19 จาก 12x+12y=768 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
12y+26y=768-19
เพิ่ม 12x ไปยัง -12x ตัดพจน์ 12x และ -12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
38y=768-19
เพิ่ม 12y ไปยัง 26y
38y=749
เพิ่ม 768 ไปยัง -19
y=\frac{749}{38}
หารทั้งสองข้างด้วย 38
12x-26\times \frac{749}{38}=19
ทดแทน \frac{749}{38} สำหรับ y ใน 12x-26y=19 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
12x-\frac{9737}{19}=19
คูณ -26 ด้วย \frac{749}{38}
12x=\frac{10098}{19}
เพิ่ม \frac{9737}{19} ไปยังทั้งสองข้างของสมการ
x=\frac{1683}{38}
หารทั้งสองข้างด้วย 12
x=\frac{1683}{38},y=\frac{749}{38}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}