หาค่า x, y
x=3.4
y=2.5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+y=5.9,2x+4y=16.8
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=5.9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y+5.9
ลบ y จากทั้งสองข้างของสมการ
2\left(-y+5.9\right)+4y=16.8
ทดแทน -y+5.9 สำหรับ x ในอีกสมการหนึ่ง 2x+4y=16.8
-2y+11.8+4y=16.8
คูณ 2 ด้วย -y+5.9
2y+11.8=16.8
เพิ่ม -2y ไปยัง 4y
2y=5
ลบ 11.8 จากทั้งสองข้างของสมการ
y=\frac{5}{2}
หารทั้งสองข้างด้วย 2
x=-\frac{5}{2}+5.9
ทดแทน \frac{5}{2} สำหรับ y ใน x=-y+5.9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{17}{5}
เพิ่ม 5.9 ไปยัง -\frac{5}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{17}{5},y=\frac{5}{2}
ระบบถูกแก้แล้วในขณะนี้
x+y=5.9,2x+4y=16.8
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\2&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 5.9-\frac{1}{2}\times 16.8\\-5.9+\frac{1}{2}\times 16.8\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{5}\\\frac{5}{2}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{17}{5},y=\frac{5}{2}
แยกเมทริกซ์องค์ประกอบ x และ y
x+y=5.9,2x+4y=16.8
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+2y=2\times 5.9,2x+4y=16.8
เพื่อทำให้ x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
2x+2y=11.8,2x+4y=16.8
ทำให้ง่ายขึ้น
2x-2x+2y-4y=\frac{59-84}{5}
ลบ 2x+4y=16.8 จาก 2x+2y=11.8 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y-4y=\frac{59-84}{5}
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-2y=\frac{59-84}{5}
เพิ่ม 2y ไปยัง -4y
-2y=-5
เพิ่ม 11.8 ไปยัง -16.8 ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
y=\frac{5}{2}
หารทั้งสองข้างด้วย -2
2x+4\times \frac{5}{2}=16.8
ทดแทน \frac{5}{2} สำหรับ y ใน 2x+4y=16.8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x+10=16.8
คูณ 4 ด้วย \frac{5}{2}
2x=6.8
ลบ 10 จากทั้งสองข้างของสมการ
x=3.4
หารทั้งสองข้างด้วย 2
x=3.4,y=\frac{5}{2}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}