ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+3y=-10,x+4y=5
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=-10
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y-10
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y-10\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y-5
คูณ \frac{1}{2} ด้วย -3y-10
-\frac{3}{2}y-5+4y=5
ทดแทน -\frac{3y}{2}-5 สำหรับ x ในอีกสมการหนึ่ง x+4y=5
\frac{5}{2}y-5=5
เพิ่ม -\frac{3y}{2} ไปยัง 4y
\frac{5}{2}y=10
เพิ่ม 5 ไปยังทั้งสองข้างของสมการ
y=4
หารทั้งสองข้างของสมการด้วย \frac{5}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{3}{2}\times 4-5
ทดแทน 4 สำหรับ y ใน x=-\frac{3}{2}y-5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-6-5
คูณ -\frac{3}{2} ด้วย 4
x=-11
เพิ่ม -5 ไปยัง -6
x=-11,y=4
ระบบถูกแก้แล้วในขณะนี้
2x+3y=-10,x+4y=5
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\5\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\1&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{3}{2\times 4-3}\\-\frac{1}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-10\right)-\frac{3}{5}\times 5\\-\frac{1}{5}\left(-10\right)+\frac{2}{5}\times 5\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-11,y=4
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=-10,x+4y=5
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+3y=-10,2x+2\times 4y=2\times 5
เพื่อทำให้ 2x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
2x+3y=-10,2x+8y=10
ทำให้ง่ายขึ้น
2x-2x+3y-8y=-10-10
ลบ 2x+8y=10 จาก 2x+3y=-10 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3y-8y=-10-10
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5y=-10-10
เพิ่ม 3y ไปยัง -8y
-5y=-20
เพิ่ม -10 ไปยัง -10
y=4
หารทั้งสองข้างด้วย -5
x+4\times 4=5
ทดแทน 4 สำหรับ y ใน x+4y=5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x+16=5
คูณ 4 ด้วย 4
x=-11
ลบ 16 จากทั้งสองข้างของสมการ
x=-11,y=4
ระบบถูกแก้แล้วในขณะนี้