ข้ามไปที่เนื้อหาหลัก
คำนวณดีเทอร์มิแนนต์
Tick mark Image
หาค่า
Tick mark Image

แชร์

det(\left(\begin{matrix}1&0&2\\1&3&4\\0&6&0\end{matrix}\right))
หาดีเทอร์มิแนนต์ของเมทริกซ์โดยวิธีการของเส้นทแยงมุม
\left(\begin{matrix}1&0&2&1&0\\1&3&4&1&3\\0&6&0&0&6\end{matrix}\right)
ขยายเมทริกซ์เริ่มต้น ด้วยการทำซ้ำแบบสองคอลัมน์แรกเป็นคอลัมน์ที่สี่และห้า
2\times 6=12
เริ่มจากรายการซ้ายบน คูณลงตามแนวทแยง และเพิ่มผลคูณที่ได้ออกมา
6\times 4=24
เริ่มจากรายการซ้ายล่าง คูณขึ้นตามแนวทแยง และเพิ่มผลคูณที่ได้
12-24
ลบผลรวมของผลคูณทแยงมุมชี้ขึ้นออกจากผลคูณของทแยงมุมชี้ลง
-12
ลบ 24 จาก 12
det(\left(\begin{matrix}1&0&2\\1&3&4\\0&6&0\end{matrix}\right))
หาดีเทอร์มิแนนต์ของเมทริกซ์โดยใช้วิธีการกระจายด้วยไมเนอร์ (หรือที่เรียกอีกอย่างหนึ่งว่าส่วนขยาย โดยใช้โคแฟกเตอร์)
det(\left(\begin{matrix}3&4\\6&0\end{matrix}\right))+2det(\left(\begin{matrix}1&3\\0&6\end{matrix}\right))
ในการการกระจายโดยใช้ไมเนอร์ คูณแต่ละองค์ประกอบของแถวแรกด้วยไมเนอร์ ซึ่งคือ ดีเทอร์มิแนนต์ของเมทริกซ์ 2\times 2 ที่สร้างขึ้นโดยการลบแถวและคอลัมน์ที่ประกอบด้วยองค์ประกอบนั้น จากนั้น คูณด้วยเครื่องหมายตำแหน่งขององค์ประกอบ
-6\times 4+2\times 6
สำหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ดีเทอร์มิแนนต์คือ ad-bc
-24+2\times 6
ทำให้ง่ายขึ้น
-12
เพิ่มพจน์เพื่อรับผลลัพธ์ขั้นสุดท้าย