ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y+2x=9
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y+2x=9,2y+3x=16
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y+2x=9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=-2x+9
ลบ 2x จากทั้งสองข้างของสมการ
2\left(-2x+9\right)+3x=16
ทดแทน -2x+9 สำหรับ y ในอีกสมการหนึ่ง 2y+3x=16
-4x+18+3x=16
คูณ 2 ด้วย -2x+9
-x+18=16
เพิ่ม -4x ไปยัง 3x
-x=-2
ลบ 18 จากทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย -1
y=-2\times 2+9
ทดแทน 2 สำหรับ x ใน y=-2x+9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-4+9
คูณ -2 ด้วย 2
y=5
เพิ่ม 9 ไปยัง -4
y=5,x=2
ระบบถูกแก้แล้วในขณะนี้
y+2x=9
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y+2x=9,2y+3x=16
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\2&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\times 9+2\times 16\\2\times 9-16\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=5,x=2
แยกเมทริกซ์องค์ประกอบ y และ x
y+2x=9
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y+2x=9,2y+3x=16
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2y+2\times 2x=2\times 9,2y+3x=16
เพื่อทำให้ y และ 2y เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
2y+4x=18,2y+3x=16
ทำให้ง่ายขึ้น
2y-2y+4x-3x=18-16
ลบ 2y+3x=16 จาก 2y+4x=18 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4x-3x=18-16
เพิ่ม 2y ไปยัง -2y ตัดพจน์ 2y และ -2y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
x=18-16
เพิ่ม 4x ไปยัง -3x
x=2
เพิ่ม 18 ไปยัง -16
2y+3\times 2=16
ทดแทน 2 สำหรับ x ใน 2y+3x=16 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
2y+6=16
คูณ 3 ด้วย 2
2y=10
ลบ 6 จากทั้งสองข้างของสมการ
y=5
หารทั้งสองข้างด้วย 2
y=5,x=2
ระบบถูกแก้แล้วในขณะนี้