ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x-y=3,3x+y=8
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
3\left(y+3\right)+y=8
ทดแทน y+3 สำหรับ x ในอีกสมการหนึ่ง 3x+y=8
3y+9+y=8
คูณ 3 ด้วย y+3
4y+9=8
เพิ่ม 3y ไปยัง y
4y=-1
ลบ 9 จากทั้งสองข้างของสมการ
y=-\frac{1}{4}
หารทั้งสองข้างด้วย 4
x=-\frac{1}{4}+3
ทดแทน -\frac{1}{4} สำหรับ y ใน x=y+3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{11}{4}
เพิ่ม 3 ไปยัง -\frac{1}{4}
x=\frac{11}{4},y=-\frac{1}{4}
ระบบถูกแก้แล้วในขณะนี้
x-y=3,3x+y=8
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\3&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3+\frac{1}{4}\times 8\\-\frac{3}{4}\times 3+\frac{1}{4}\times 8\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{1}{4}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{11}{4},y=-\frac{1}{4}
แยกเมทริกซ์องค์ประกอบ x และ y
x-y=3,3x+y=8
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x+3\left(-1\right)y=3\times 3,3x+y=8
เพื่อทำให้ x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
3x-3y=9,3x+y=8
ทำให้ง่ายขึ้น
3x-3x-3y-y=9-8
ลบ 3x+y=8 จาก 3x-3y=9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y-y=9-8
เพิ่ม 3x ไปยัง -3x ตัดพจน์ 3x และ -3x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-4y=9-8
เพิ่ม -3y ไปยัง -y
-4y=1
เพิ่ม 9 ไปยัง -8
y=-\frac{1}{4}
หารทั้งสองข้างด้วย -4
3x-\frac{1}{4}=8
ทดแทน -\frac{1}{4} สำหรับ y ใน 3x+y=8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x=\frac{33}{4}
เพิ่ม \frac{1}{4} ไปยังทั้งสองข้างของสมการ
x=\frac{11}{4}
หารทั้งสองข้างด้วย 3
x=\frac{11}{4},y=-\frac{1}{4}
ระบบถูกแก้แล้วในขณะนี้