\left\{ \begin{array} { l } { x - y = 2 x } \\ { 2 x + y = 16 } \end{array} \right.
หาค่า x, y
x=16
y=-16
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x-y-2x=0
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
-x-y=0
รวม x และ -2x เพื่อให้ได้รับ -x
-x-y=0,2x+y=16
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-x-y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-x=y
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=-y
หารทั้งสองข้างด้วย -1
2\left(-1\right)y+y=16
ทดแทน -y สำหรับ x ในอีกสมการหนึ่ง 2x+y=16
-2y+y=16
คูณ 2 ด้วย -y
-y=16
เพิ่ม -2y ไปยัง y
y=-16
หารทั้งสองข้างด้วย -1
x=-\left(-16\right)
ทดแทน -16 สำหรับ y ใน x=-y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=16
คูณ -1 ด้วย -16
x=16,y=-16
ระบบถูกแก้แล้วในขณะนี้
x-y-2x=0
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
-x-y=0
รวม x และ -2x เพื่อให้ได้รับ -x
-x-y=0,2x+y=16
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-1&-1\\2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&-\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-2&-1\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-16\end{matrix}\right)
คูณเมทริกซ์
x=16,y=-16
แยกเมทริกซ์องค์ประกอบ x และ y
x-y-2x=0
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
-x-y=0
รวม x และ -2x เพื่อให้ได้รับ -x
-x-y=0,2x+y=16
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2\left(-1\right)x+2\left(-1\right)y=0,-2x-y=-16
เพื่อทำให้ -x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -1
-2x-2y=0,-2x-y=-16
ทำให้ง่ายขึ้น
-2x+2x-2y+y=16
ลบ -2x-y=-16 จาก -2x-2y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2y+y=16
เพิ่ม -2x ไปยัง 2x ตัดพจน์ -2x และ 2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=16
เพิ่ม -2y ไปยัง y
y=-16
หารทั้งสองข้างด้วย -1
2x-16=16
ทดแทน -16 สำหรับ y ใน 2x+y=16 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x=32
เพิ่ม 16 ไปยังทั้งสองข้างของสมการ
x=16
หารทั้งสองข้างด้วย 2
x=16,y=-16
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}