ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x=3y-3
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 3 ด้วย y-1
2x-3y=-3
ลบ 3y จากทั้งสองด้าน
x-y=2,2x-3y=-3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+2
เพิ่ม y ไปยังทั้งสองข้างของสมการ
2\left(y+2\right)-3y=-3
ทดแทน y+2 สำหรับ x ในอีกสมการหนึ่ง 2x-3y=-3
2y+4-3y=-3
คูณ 2 ด้วย y+2
-y+4=-3
เพิ่ม 2y ไปยัง -3y
-y=-7
ลบ 4 จากทั้งสองข้างของสมการ
y=7
หารทั้งสองข้างด้วย -1
x=7+2
ทดแทน 7 สำหรับ y ใน x=y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=9
เพิ่ม 2 ไปยัง 7
x=9,y=7
ระบบถูกแก้แล้วในขณะนี้
2x=3y-3
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 3 ด้วย y-1
2x-3y=-3
ลบ 3y จากทั้งสองด้าน
x-y=2,2x-3y=-3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\right)}&-\frac{-1}{-3-\left(-2\right)}\\-\frac{2}{-3-\left(-2\right)}&\frac{1}{-3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 2-\left(-3\right)\\2\times 2-\left(-3\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=9,y=7
แยกเมทริกซ์องค์ประกอบ x และ y
2x=3y-3
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 3 ด้วย y-1
2x-3y=-3
ลบ 3y จากทั้งสองด้าน
x-y=2,2x-3y=-3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+2\left(-1\right)y=2\times 2,2x-3y=-3
เพื่อทำให้ x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
2x-2y=4,2x-3y=-3
ทำให้ง่ายขึ้น
2x-2x-2y+3y=4+3
ลบ 2x-3y=-3 จาก 2x-2y=4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2y+3y=4+3
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
y=4+3
เพิ่ม -2y ไปยัง 3y
y=7
เพิ่ม 4 ไปยัง 3
2x-3\times 7=-3
ทดแทน 7 สำหรับ y ใน 2x-3y=-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x-21=-3
คูณ -3 ด้วย 7
2x=18
เพิ่ม 21 ไปยังทั้งสองข้างของสมการ
x=9
หารทั้งสองข้างด้วย 2
x=9,y=7
ระบบถูกแก้แล้วในขณะนี้