\left\{ \begin{array} { l } { x = y + 3 } \\ { 7 x - 5 y = 19 } \end{array} \right.
หาค่า x, y
x=2
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x-y=3
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=3,7x-5y=19
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
7\left(y+3\right)-5y=19
ทดแทน y+3 สำหรับ x ในอีกสมการหนึ่ง 7x-5y=19
7y+21-5y=19
คูณ 7 ด้วย y+3
2y+21=19
เพิ่ม 7y ไปยัง -5y
2y=-2
ลบ 21 จากทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างด้วย 2
x=-1+3
ทดแทน -1 สำหรับ y ใน x=y+3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2
เพิ่ม 3 ไปยัง -1
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
x-y=3
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=3,7x-5y=19
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-7\right)}&-\frac{-1}{-5-\left(-7\right)}\\-\frac{7}{-5-\left(-7\right)}&\frac{1}{-5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{1}{2}\\-\frac{7}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 3+\frac{1}{2}\times 19\\-\frac{7}{2}\times 3+\frac{1}{2}\times 19\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
x-y=3
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=3,7x-5y=19
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
7x+7\left(-1\right)y=7\times 3,7x-5y=19
เพื่อทำให้ x และ 7x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 7 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
7x-7y=21,7x-5y=19
ทำให้ง่ายขึ้น
7x-7x-7y+5y=21-19
ลบ 7x-5y=19 จาก 7x-7y=21 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-7y+5y=21-19
เพิ่ม 7x ไปยัง -7x ตัดพจน์ 7x และ -7x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-2y=21-19
เพิ่ม -7y ไปยัง 5y
-2y=2
เพิ่ม 21 ไปยัง -19
y=-1
หารทั้งสองข้างด้วย -2
7x-5\left(-1\right)=19
ทดแทน -1 สำหรับ y ใน 7x-5y=19 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
7x+5=19
คูณ -5 ด้วย -1
7x=14
ลบ 5 จากทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 7
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}