\left\{ \begin{array} { l } { x = 2 y } \\ { y = 3 x - 10 } \end{array} \right.
หาค่า x, y
x=4
y=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x-2y=0
พิจารณาสมการแรก ลบ 2y จากทั้งสองด้าน
y-3x=-10
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
x-2y=0,-3x+y=-10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=2y
เพิ่ม 2y ไปยังทั้งสองข้างของสมการ
-3\times 2y+y=-10
ทดแทน 2y สำหรับ x ในอีกสมการหนึ่ง -3x+y=-10
-6y+y=-10
คูณ -3 ด้วย 2y
-5y=-10
เพิ่ม -6y ไปยัง y
y=2
หารทั้งสองข้างด้วย -5
x=2\times 2
ทดแทน 2 สำหรับ y ใน x=2y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=4
คูณ 2 ด้วย 2
x=4,y=2
ระบบถูกแก้แล้วในขณะนี้
x-2y=0
พิจารณาสมการแรก ลบ 2y จากทั้งสองด้าน
y-3x=-10
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
x-2y=0,-3x+y=-10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\left(-3\right)\right)}&-\frac{-2}{1-\left(-2\left(-3\right)\right)}\\-\frac{-3}{1-\left(-2\left(-3\right)\right)}&\frac{1}{1-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{2}{5}\\-\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)\\-\frac{1}{5}\left(-10\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=4,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
x-2y=0
พิจารณาสมการแรก ลบ 2y จากทั้งสองด้าน
y-3x=-10
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
x-2y=0,-3x+y=-10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-3x-3\left(-2\right)y=0,-3x+y=-10
เพื่อทำให้ x และ -3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-3x+6y=0,-3x+y=-10
ทำให้ง่ายขึ้น
-3x+3x+6y-y=10
ลบ -3x+y=-10 จาก -3x+6y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
6y-y=10
เพิ่ม -3x ไปยัง 3x ตัดพจน์ -3x และ 3x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=10
เพิ่ม 6y ไปยัง -y
y=2
หารทั้งสองข้างด้วย 5
-3x+2=-10
ทดแทน 2 สำหรับ y ใน -3x+y=-10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-3x=-12
ลบ 2 จากทั้งสองข้างของสมการ
x=4
หารทั้งสองข้างด้วย -3
x=4,y=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}