ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,x+y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=-3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y-3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
y-3+y=2
ทดแทน y-3 สำหรับ x ในอีกสมการหนึ่ง x+y=2
2y-3=2
เพิ่ม y ไปยัง y
2y=5
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
y=\frac{5}{2}
หารทั้งสองข้างด้วย 2
x=\frac{5}{2}-3
ทดแทน \frac{5}{2} สำหรับ y ใน x=y-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{1}{2}
เพิ่ม -3 ไปยัง \frac{5}{2}
x=-\frac{1}{2},y=\frac{5}{2}
ระบบถูกแก้แล้วในขณะนี้
x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,x+y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{5}{2}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{1}{2},y=\frac{5}{2}
แยกเมทริกซ์องค์ประกอบ x และ y
x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,x+y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x-y-y=-3-2
ลบ x+y=2 จาก x-y=-3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-y-y=-3-2
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-2y=-3-2
เพิ่ม -y ไปยัง -y
-2y=-5
เพิ่ม -3 ไปยัง -2
y=\frac{5}{2}
หารทั้งสองข้างด้วย -2
x+\frac{5}{2}=2
ทดแทน \frac{5}{2} สำหรับ y ใน x+y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{1}{2}
ลบ \frac{5}{2} จากทั้งสองข้างของสมการ
x=-\frac{1}{2},y=\frac{5}{2}
ระบบถูกแก้แล้วในขณะนี้