\left\{ \begin{array} { l } { x + 2 y = - 18 } \\ { 3 x - y = - 1 } \end{array} \right.
หาค่า x, y
x = -\frac{20}{7} = -2\frac{6}{7} \approx -2.857142857
y = -\frac{53}{7} = -7\frac{4}{7} \approx -7.571428571
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+2y=-18,3x-y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=-18
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y-18
ลบ 2y จากทั้งสองข้างของสมการ
3\left(-2y-18\right)-y=-1
ทดแทน -2y-18 สำหรับ x ในอีกสมการหนึ่ง 3x-y=-1
-6y-54-y=-1
คูณ 3 ด้วย -2y-18
-7y-54=-1
เพิ่ม -6y ไปยัง -y
-7y=53
เพิ่ม 54 ไปยังทั้งสองข้างของสมการ
y=-\frac{53}{7}
หารทั้งสองข้างด้วย -7
x=-2\left(-\frac{53}{7}\right)-18
ทดแทน -\frac{53}{7} สำหรับ y ใน x=-2y-18 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{106}{7}-18
คูณ -2 ด้วย -\frac{53}{7}
x=-\frac{20}{7}
เพิ่ม -18 ไปยัง \frac{106}{7}
x=-\frac{20}{7},y=-\frac{53}{7}
ระบบถูกแก้แล้วในขณะนี้
x+2y=-18,3x-y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\3&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-18\right)+\frac{2}{7}\left(-1\right)\\\frac{3}{7}\left(-18\right)-\frac{1}{7}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{7}\\-\frac{53}{7}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{20}{7},y=-\frac{53}{7}
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=-18,3x-y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x+3\times 2y=3\left(-18\right),3x-y=-1
เพื่อทำให้ x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
3x+6y=-54,3x-y=-1
ทำให้ง่ายขึ้น
3x-3x+6y+y=-54+1
ลบ 3x-y=-1 จาก 3x+6y=-54 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
6y+y=-54+1
เพิ่ม 3x ไปยัง -3x ตัดพจน์ 3x และ -3x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
7y=-54+1
เพิ่ม 6y ไปยัง y
7y=-53
เพิ่ม -54 ไปยัง 1
y=-\frac{53}{7}
หารทั้งสองข้างด้วย 7
3x-\left(-\frac{53}{7}\right)=-1
ทดแทน -\frac{53}{7} สำหรับ y ใน 3x-y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x=-\frac{60}{7}
ลบ \frac{53}{7} จากทั้งสองข้างของสมการ
x=-\frac{20}{7}
หารทั้งสองข้างด้วย 3
x=-\frac{20}{7},y=-\frac{53}{7}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}