ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

6x+6y=6,6x+3y=-3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
6x+6y=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
6x=-6y+6
ลบ 6y จากทั้งสองข้างของสมการ
x=\frac{1}{6}\left(-6y+6\right)
หารทั้งสองข้างด้วย 6
x=-y+1
คูณ \frac{1}{6} ด้วย -6y+6
6\left(-y+1\right)+3y=-3
ทดแทน -y+1 สำหรับ x ในอีกสมการหนึ่ง 6x+3y=-3
-6y+6+3y=-3
คูณ 6 ด้วย -y+1
-3y+6=-3
เพิ่ม -6y ไปยัง 3y
-3y=-9
ลบ 6 จากทั้งสองข้างของสมการ
y=3
หารทั้งสองข้างด้วย -3
x=-3+1
ทดแทน 3 สำหรับ y ใน x=-y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-2
เพิ่ม 1 ไปยัง -3
x=-2,y=3
ระบบถูกแก้แล้วในขณะนี้
6x+6y=6,6x+3y=-3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}6&6\\6&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-6\times 6}&-\frac{6}{6\times 3-6\times 6}\\-\frac{6}{6\times 3-6\times 6}&\frac{6}{6\times 3-6\times 6}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 6+\frac{1}{3}\left(-3\right)\\\frac{1}{3}\times 6-\frac{1}{3}\left(-3\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-2,y=3
แยกเมทริกซ์องค์ประกอบ x และ y
6x+6y=6,6x+3y=-3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
6x-6x+6y-3y=6+3
ลบ 6x+3y=-3 จาก 6x+6y=6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
6y-3y=6+3
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
3y=6+3
เพิ่ม 6y ไปยัง -3y
3y=9
เพิ่ม 6 ไปยัง 3
y=3
หารทั้งสองข้างด้วย 3
6x+3\times 3=-3
ทดแทน 3 สำหรับ y ใน 6x+3y=-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
6x+9=-3
คูณ 3 ด้วย 3
6x=-12
ลบ 9 จากทั้งสองข้างของสมการ
x=-2
หารทั้งสองข้างด้วย 6
x=-2,y=3
ระบบถูกแก้แล้วในขณะนี้