\left\{ \begin{array} { l } { 5 x - 3 y = 12 } \\ { x - 2 y = 1 } \end{array} \right.
หาค่า x, y
x=3
y=1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
5x-3y=12,x-2y=1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
5x-3y=12
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
5x=3y+12
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{5}\left(3y+12\right)
หารทั้งสองข้างด้วย 5
x=\frac{3}{5}y+\frac{12}{5}
คูณ \frac{1}{5} ด้วย 12+3y
\frac{3}{5}y+\frac{12}{5}-2y=1
ทดแทน \frac{12+3y}{5} สำหรับ x ในอีกสมการหนึ่ง x-2y=1
-\frac{7}{5}y+\frac{12}{5}=1
เพิ่ม \frac{3y}{5} ไปยัง -2y
-\frac{7}{5}y=-\frac{7}{5}
ลบ \frac{12}{5} จากทั้งสองข้างของสมการ
y=1
หารทั้งสองข้างของสมการด้วย -\frac{7}{5} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{3+12}{5}
ทดแทน 1 สำหรับ y ใน x=\frac{3}{5}y+\frac{12}{5} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=3
เพิ่ม \frac{12}{5} ไปยัง \frac{3}{5} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=1
ระบบถูกแก้แล้วในขณะนี้
5x-3y=12,x-2y=1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}5&-3\\1&-2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-\left(-3\right)}&-\frac{-3}{5\left(-2\right)-\left(-3\right)}\\-\frac{1}{5\left(-2\right)-\left(-3\right)}&\frac{5}{5\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}12\\1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{3}{7}\\\frac{1}{7}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}12\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 12-\frac{3}{7}\\\frac{1}{7}\times 12-\frac{5}{7}\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=1
แยกเมทริกซ์องค์ประกอบ x และ y
5x-3y=12,x-2y=1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5x-3y=12,5x+5\left(-2\right)y=5
เพื่อทำให้ 5x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 5
5x-3y=12,5x-10y=5
ทำให้ง่ายขึ้น
5x-5x-3y+10y=12-5
ลบ 5x-10y=5 จาก 5x-3y=12 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y+10y=12-5
เพิ่ม 5x ไปยัง -5x ตัดพจน์ 5x และ -5x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
7y=12-5
เพิ่ม -3y ไปยัง 10y
7y=7
เพิ่ม 12 ไปยัง -5
y=1
หารทั้งสองข้างด้วย 7
x-2=1
ทดแทน 1 สำหรับ y ใน x-2y=1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=3
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=3,y=1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}