ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

5x+y=7,3x-y=1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
5x+y=7
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
5x=-y+7
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{5}\left(-y+7\right)
หารทั้งสองข้างด้วย 5
x=-\frac{1}{5}y+\frac{7}{5}
คูณ \frac{1}{5} ด้วย -y+7
3\left(-\frac{1}{5}y+\frac{7}{5}\right)-y=1
ทดแทน \frac{-y+7}{5} สำหรับ x ในอีกสมการหนึ่ง 3x-y=1
-\frac{3}{5}y+\frac{21}{5}-y=1
คูณ 3 ด้วย \frac{-y+7}{5}
-\frac{8}{5}y+\frac{21}{5}=1
เพิ่ม -\frac{3y}{5} ไปยัง -y
-\frac{8}{5}y=-\frac{16}{5}
ลบ \frac{21}{5} จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างของสมการด้วย -\frac{8}{5} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{5}\times 2+\frac{7}{5}
ทดแทน 2 สำหรับ y ใน x=-\frac{1}{5}y+\frac{7}{5} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-2+7}{5}
คูณ -\frac{1}{5} ด้วย 2
x=1
เพิ่ม \frac{7}{5} ไปยัง -\frac{2}{5} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้
5x+y=7,3x-y=1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}5&1\\3&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-3}&-\frac{1}{5\left(-1\right)-3}\\-\frac{3}{5\left(-1\right)-3}&\frac{5}{5\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7+\frac{1}{8}\\\frac{3}{8}\times 7-\frac{5}{8}\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
5x+y=7,3x-y=1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 5x+3y=3\times 7,5\times 3x+5\left(-1\right)y=5
เพื่อทำให้ 5x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 5
15x+3y=21,15x-5y=5
ทำให้ง่ายขึ้น
15x-15x+3y+5y=21-5
ลบ 15x-5y=5 จาก 15x+3y=21 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3y+5y=21-5
เพิ่ม 15x ไปยัง -15x ตัดพจน์ 15x และ -15x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
8y=21-5
เพิ่ม 3y ไปยัง 5y
8y=16
เพิ่ม 21 ไปยัง -5
y=2
หารทั้งสองข้างด้วย 8
3x-2=1
ทดแทน 2 สำหรับ y ใน 3x-y=1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x=3
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย 3
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้