ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

4x+y=9,2x+y=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
4x+y=9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
4x=-y+9
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{4}\left(-y+9\right)
หารทั้งสองข้างด้วย 4
x=-\frac{1}{4}y+\frac{9}{4}
คูณ \frac{1}{4} ด้วย -y+9
2\left(-\frac{1}{4}y+\frac{9}{4}\right)+y=7
ทดแทน \frac{-y+9}{4} สำหรับ x ในอีกสมการหนึ่ง 2x+y=7
-\frac{1}{2}y+\frac{9}{2}+y=7
คูณ 2 ด้วย \frac{-y+9}{4}
\frac{1}{2}y+\frac{9}{2}=7
เพิ่ม -\frac{y}{2} ไปยัง y
\frac{1}{2}y=\frac{5}{2}
ลบ \frac{9}{2} จากทั้งสองข้างของสมการ
y=5
คูณทั้งสองข้างด้วย 2
x=-\frac{1}{4}\times 5+\frac{9}{4}
ทดแทน 5 สำหรับ y ใน x=-\frac{1}{4}y+\frac{9}{4} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-5+9}{4}
คูณ -\frac{1}{4} ด้วย 5
x=1
เพิ่ม \frac{9}{4} ไปยัง -\frac{5}{4} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=1,y=5
ระบบถูกแก้แล้วในขณะนี้
4x+y=9,2x+y=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}4&1\\2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-1&2\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9-\frac{1}{2}\times 7\\-9+2\times 7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
4x+y=9,2x+y=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4x-2x+y-y=9-7
ลบ 2x+y=7 จาก 4x+y=9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4x-2x=9-7
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
2x=9-7
เพิ่ม 4x ไปยัง -2x
2x=2
เพิ่ม 9 ไปยัง -7
x=1
หารทั้งสองข้างด้วย 2
2+y=7
ทดแทน 1 สำหรับ x ใน 2x+y=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=5
ลบ 2 จากทั้งสองข้างของสมการ
x=1,y=5
ระบบถูกแก้แล้วในขณะนี้