\left\{ \begin{array} { l } { 4 x + y = 5 } \\ { 2 x - y = - 2 } \end{array} \right.
หาค่า x, y
x=\frac{1}{2}=0.5
y=3
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
4x+y=5,2x-y=-2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
4x+y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
4x=-y+5
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{4}\left(-y+5\right)
หารทั้งสองข้างด้วย 4
x=-\frac{1}{4}y+\frac{5}{4}
คูณ \frac{1}{4} ด้วย -y+5
2\left(-\frac{1}{4}y+\frac{5}{4}\right)-y=-2
ทดแทน \frac{-y+5}{4} สำหรับ x ในอีกสมการหนึ่ง 2x-y=-2
-\frac{1}{2}y+\frac{5}{2}-y=-2
คูณ 2 ด้วย \frac{-y+5}{4}
-\frac{3}{2}y+\frac{5}{2}=-2
เพิ่ม -\frac{y}{2} ไปยัง -y
-\frac{3}{2}y=-\frac{9}{2}
ลบ \frac{5}{2} จากทั้งสองข้างของสมการ
y=3
หารทั้งสองข้างของสมการด้วย -\frac{3}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{4}\times 3+\frac{5}{4}
ทดแทน 3 สำหรับ y ใน x=-\frac{1}{4}y+\frac{5}{4} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-3+5}{4}
คูณ -\frac{1}{4} ด้วย 3
x=\frac{1}{2}
เพิ่ม \frac{5}{4} ไปยัง -\frac{3}{4} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{1}{2},y=3
ระบบถูกแก้แล้วในขณะนี้
4x+y=5,2x-y=-2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}4&1\\2&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2}&-\frac{1}{4\left(-1\right)-2}\\-\frac{2}{4\left(-1\right)-2}&\frac{4}{4\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 5+\frac{1}{6}\left(-2\right)\\\frac{1}{3}\times 5-\frac{2}{3}\left(-2\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{1}{2},y=3
แยกเมทริกซ์องค์ประกอบ x และ y
4x+y=5,2x-y=-2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2\times 4x+2y=2\times 5,4\times 2x+4\left(-1\right)y=4\left(-2\right)
เพื่อทำให้ 4x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 4
8x+2y=10,8x-4y=-8
ทำให้ง่ายขึ้น
8x-8x+2y+4y=10+8
ลบ 8x-4y=-8 จาก 8x+2y=10 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y+4y=10+8
เพิ่ม 8x ไปยัง -8x ตัดพจน์ 8x และ -8x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
6y=10+8
เพิ่ม 2y ไปยัง 4y
6y=18
เพิ่ม 10 ไปยัง 8
y=3
หารทั้งสองข้างด้วย 6
2x-3=-2
ทดแทน 3 สำหรับ y ใน 2x-y=-2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x=1
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}
หารทั้งสองข้างด้วย 2
x=\frac{1}{2},y=3
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}