\left\{ \begin{array} { l } { 3 x - y = 6 } \\ { 5 x + y = 10 } \end{array} \right.
หาค่า x, y
x=2
y=0
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x-y=6,5x+y=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x-y=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=y+6
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}\left(y+6\right)
หารทั้งสองข้างด้วย 3
x=\frac{1}{3}y+2
คูณ \frac{1}{3} ด้วย y+6
5\left(\frac{1}{3}y+2\right)+y=10
ทดแทน \frac{y}{3}+2 สำหรับ x ในอีกสมการหนึ่ง 5x+y=10
\frac{5}{3}y+10+y=10
คูณ 5 ด้วย \frac{y}{3}+2
\frac{8}{3}y+10=10
เพิ่ม \frac{5y}{3} ไปยัง y
\frac{8}{3}y=0
ลบ 10 จากทั้งสองข้างของสมการ
y=0
หารทั้งสองข้างของสมการด้วย \frac{8}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=2
ทดแทน 0 สำหรับ y ใน x=\frac{1}{3}y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2,y=0
ระบบถูกแก้แล้วในขณะนี้
3x-y=6,5x+y=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-1\\5&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\right)}&-\frac{-1}{3-\left(-5\right)}\\-\frac{5}{3-\left(-5\right)}&\frac{3}{3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\-\frac{5}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 10\\-\frac{5}{8}\times 6+\frac{3}{8}\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=0
แยกเมทริกซ์องค์ประกอบ x และ y
3x-y=6,5x+y=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5\times 3x+5\left(-1\right)y=5\times 6,3\times 5x+3y=3\times 10
เพื่อทำให้ 3x และ 5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
15x-5y=30,15x+3y=30
ทำให้ง่ายขึ้น
15x-15x-5y-3y=30-30
ลบ 15x+3y=30 จาก 15x-5y=30 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-5y-3y=30-30
เพิ่ม 15x ไปยัง -15x ตัดพจน์ 15x และ -15x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-8y=30-30
เพิ่ม -5y ไปยัง -3y
-8y=0
เพิ่ม 30 ไปยัง -30
y=0
หารทั้งสองข้างด้วย -8
5x=10
ทดแทน 0 สำหรับ y ใน 5x+y=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2
หารทั้งสองข้างด้วย 5
x=2,y=0
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}