ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x-y=-1,-x+2y=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x-y=-1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=y-1
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}\left(y-1\right)
หารทั้งสองข้างด้วย 3
x=\frac{1}{3}y-\frac{1}{3}
คูณ \frac{1}{3} ด้วย y-1
-\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=7
ทดแทน \frac{-1+y}{3} สำหรับ x ในอีกสมการหนึ่ง -x+2y=7
-\frac{1}{3}y+\frac{1}{3}+2y=7
คูณ -1 ด้วย \frac{-1+y}{3}
\frac{5}{3}y+\frac{1}{3}=7
เพิ่ม -\frac{y}{3} ไปยัง 2y
\frac{5}{3}y=\frac{20}{3}
ลบ \frac{1}{3} จากทั้งสองข้างของสมการ
y=4
หารทั้งสองข้างของสมการด้วย \frac{5}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{1}{3}\times 4-\frac{1}{3}
ทดแทน 4 สำหรับ y ใน x=\frac{1}{3}y-\frac{1}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{4-1}{3}
คูณ \frac{1}{3} ด้วย 4
x=1
เพิ่ม -\frac{1}{3} ไปยัง \frac{4}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=1,y=4
ระบบถูกแก้แล้วในขณะนี้
3x-y=-1,-x+2y=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-1\right)+\frac{1}{5}\times 7\\\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=4
แยกเมทริกซ์องค์ประกอบ x และ y
3x-y=-1,-x+2y=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-3x-\left(-y\right)=-\left(-1\right),3\left(-1\right)x+3\times 2y=3\times 7
เพื่อทำให้ 3x และ -x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
-3x+y=1,-3x+6y=21
ทำให้ง่ายขึ้น
-3x+3x+y-6y=1-21
ลบ -3x+6y=21 จาก -3x+y=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
y-6y=1-21
เพิ่ม -3x ไปยัง 3x ตัดพจน์ -3x และ 3x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5y=1-21
เพิ่ม y ไปยัง -6y
-5y=-20
เพิ่ม 1 ไปยัง -21
y=4
หารทั้งสองข้างด้วย -5
-x+2\times 4=7
ทดแทน 4 สำหรับ y ใน -x+2y=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-x+8=7
คูณ 2 ด้วย 4
-x=-1
ลบ 8 จากทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย -1
x=1,y=4
ระบบถูกแก้แล้วในขณะนี้