\left\{ \begin{array} { l } { 3 x - 5 y - 4 = 0 } \\ { 15 y = 4 x + 3 } \end{array} \right.
หาค่า x, y
x=3
y=1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x-5y=4
พิจารณาสมการแรก เพิ่ม 4 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
15y-4x=3
พิจารณาสมการที่สอง ลบ 4x จากทั้งสองด้าน
3x-5y=4,-4x+15y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x-5y=4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=5y+4
เพิ่ม 5y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}\left(5y+4\right)
หารทั้งสองข้างด้วย 3
x=\frac{5}{3}y+\frac{4}{3}
คูณ \frac{1}{3} ด้วย 5y+4
-4\left(\frac{5}{3}y+\frac{4}{3}\right)+15y=3
ทดแทน \frac{5y+4}{3} สำหรับ x ในอีกสมการหนึ่ง -4x+15y=3
-\frac{20}{3}y-\frac{16}{3}+15y=3
คูณ -4 ด้วย \frac{5y+4}{3}
\frac{25}{3}y-\frac{16}{3}=3
เพิ่ม -\frac{20y}{3} ไปยัง 15y
\frac{25}{3}y=\frac{25}{3}
เพิ่ม \frac{16}{3} ไปยังทั้งสองข้างของสมการ
y=1
หารทั้งสองข้างของสมการด้วย \frac{25}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{5+4}{3}
ทดแทน 1 สำหรับ y ใน x=\frac{5}{3}y+\frac{4}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=3
เพิ่ม \frac{4}{3} ไปยัง \frac{5}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=1
ระบบถูกแก้แล้วในขณะนี้
3x-5y=4
พิจารณาสมการแรก เพิ่ม 4 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
15y-4x=3
พิจารณาสมการที่สอง ลบ 4x จากทั้งสองด้าน
3x-5y=4,-4x+15y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{3\times 15-\left(-5\left(-4\right)\right)}&-\frac{-5}{3\times 15-\left(-5\left(-4\right)\right)}\\-\frac{-4}{3\times 15-\left(-5\left(-4\right)\right)}&\frac{3}{3\times 15-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{4}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4+\frac{1}{5}\times 3\\\frac{4}{25}\times 4+\frac{3}{25}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=1
แยกเมทริกซ์องค์ประกอบ x และ y
3x-5y=4
พิจารณาสมการแรก เพิ่ม 4 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
15y-4x=3
พิจารณาสมการที่สอง ลบ 4x จากทั้งสองด้าน
3x-5y=4,-4x+15y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-4\times 3x-4\left(-5\right)y=-4\times 4,3\left(-4\right)x+3\times 15y=3\times 3
เพื่อทำให้ 3x และ -4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
-12x+20y=-16,-12x+45y=9
ทำให้ง่ายขึ้น
-12x+12x+20y-45y=-16-9
ลบ -12x+45y=9 จาก -12x+20y=-16 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
20y-45y=-16-9
เพิ่ม -12x ไปยัง 12x ตัดพจน์ -12x และ 12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-25y=-16-9
เพิ่ม 20y ไปยัง -45y
-25y=-25
เพิ่ม -16 ไปยัง -9
y=1
หารทั้งสองข้างด้วย -25
-4x+15=3
ทดแทน 1 สำหรับ y ใน -4x+15y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-4x=-12
ลบ 15 จากทั้งสองข้างของสมการ
x=3
หารทั้งสองข้างด้วย -4
x=3,y=1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}