ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x-2y=5,-3x+4y=-9
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x-2y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=2y+5
เพิ่ม 2y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}\left(2y+5\right)
หารทั้งสองข้างด้วย 3
x=\frac{2}{3}y+\frac{5}{3}
คูณ \frac{1}{3} ด้วย 2y+5
-3\left(\frac{2}{3}y+\frac{5}{3}\right)+4y=-9
ทดแทน \frac{2y+5}{3} สำหรับ x ในอีกสมการหนึ่ง -3x+4y=-9
-2y-5+4y=-9
คูณ -3 ด้วย \frac{2y+5}{3}
2y-5=-9
เพิ่ม -2y ไปยัง 4y
2y=-4
เพิ่ม 5 ไปยังทั้งสองข้างของสมการ
y=-2
หารทั้งสองข้างด้วย 2
x=\frac{2}{3}\left(-2\right)+\frac{5}{3}
ทดแทน -2 สำหรับ y ใน x=\frac{2}{3}y+\frac{5}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-4+5}{3}
คูณ \frac{2}{3} ด้วย -2
x=\frac{1}{3}
เพิ่ม \frac{5}{3} ไปยัง -\frac{4}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{1}{3},y=-2
ระบบถูกแก้แล้วในขณะนี้
3x-2y=5,-3x+4y=-9
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-2\\-3&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-2\left(-3\right)\right)}&-\frac{-2}{3\times 4-\left(-2\left(-3\right)\right)}\\-\frac{-3}{3\times 4-\left(-2\left(-3\right)\right)}&\frac{3}{3\times 4-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 5+\frac{1}{3}\left(-9\right)\\\frac{1}{2}\times 5+\frac{1}{2}\left(-9\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{1}{3},y=-2
แยกเมทริกซ์องค์ประกอบ x และ y
3x-2y=5,-3x+4y=-9
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-3\times 3x-3\left(-2\right)y=-3\times 5,3\left(-3\right)x+3\times 4y=3\left(-9\right)
เพื่อทำให้ 3x และ -3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
-9x+6y=-15,-9x+12y=-27
ทำให้ง่ายขึ้น
-9x+9x+6y-12y=-15+27
ลบ -9x+12y=-27 จาก -9x+6y=-15 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
6y-12y=-15+27
เพิ่ม -9x ไปยัง 9x ตัดพจน์ -9x และ 9x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-6y=-15+27
เพิ่ม 6y ไปยัง -12y
-6y=12
เพิ่ม -15 ไปยัง 27
y=-2
หารทั้งสองข้างด้วย -6
-3x+4\left(-2\right)=-9
ทดแทน -2 สำหรับ y ใน -3x+4y=-9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-3x-8=-9
คูณ 4 ด้วย -2
-3x=-1
เพิ่ม 8 ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}
หารทั้งสองข้างด้วย -3
x=\frac{1}{3},y=-2
ระบบถูกแก้แล้วในขณะนี้