ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x+y=8,2x+y=5
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+y=8
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-y+8
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-y+8\right)
หารทั้งสองข้างด้วย 3
x=-\frac{1}{3}y+\frac{8}{3}
คูณ \frac{1}{3} ด้วย -y+8
2\left(-\frac{1}{3}y+\frac{8}{3}\right)+y=5
ทดแทน \frac{-y+8}{3} สำหรับ x ในอีกสมการหนึ่ง 2x+y=5
-\frac{2}{3}y+\frac{16}{3}+y=5
คูณ 2 ด้วย \frac{-y+8}{3}
\frac{1}{3}y+\frac{16}{3}=5
เพิ่ม -\frac{2y}{3} ไปยัง y
\frac{1}{3}y=-\frac{1}{3}
ลบ \frac{16}{3} จากทั้งสองข้างของสมการ
y=-1
คูณทั้งสองข้างด้วย 3
x=-\frac{1}{3}\left(-1\right)+\frac{8}{3}
ทดแทน -1 สำหรับ y ใน x=-\frac{1}{3}y+\frac{8}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{1+8}{3}
คูณ -\frac{1}{3} ด้วย -1
x=3
เพิ่ม \frac{8}{3} ไปยัง \frac{1}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=-1
ระบบถูกแก้แล้วในขณะนี้
3x+y=8,2x+y=5
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&1\\2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8-5\\-2\times 8+3\times 5\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
3x+y=8,2x+y=5
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x-2x+y-y=8-5
ลบ 2x+y=5 จาก 3x+y=8 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x-2x=8-5
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
x=8-5
เพิ่ม 3x ไปยัง -2x
x=3
เพิ่ม 8 ไปยัง -5
2\times 3+y=5
ทดแทน 3 สำหรับ x ใน 2x+y=5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
6+y=5
คูณ 2 ด้วย 3
y=-1
ลบ 6 จากทั้งสองข้างของสมการ
x=3,y=-1
ระบบถูกแก้แล้วในขณะนี้