ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x+y=2,5x-y=8
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+y=2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-y+2
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-y+2\right)
หารทั้งสองข้างด้วย 3
x=-\frac{1}{3}y+\frac{2}{3}
คูณ \frac{1}{3} ด้วย -y+2
5\left(-\frac{1}{3}y+\frac{2}{3}\right)-y=8
ทดแทน \frac{-y+2}{3} สำหรับ x ในอีกสมการหนึ่ง 5x-y=8
-\frac{5}{3}y+\frac{10}{3}-y=8
คูณ 5 ด้วย \frac{-y+2}{3}
-\frac{8}{3}y+\frac{10}{3}=8
เพิ่ม -\frac{5y}{3} ไปยัง -y
-\frac{8}{3}y=\frac{14}{3}
ลบ \frac{10}{3} จากทั้งสองข้างของสมการ
y=-\frac{7}{4}
หารทั้งสองข้างของสมการด้วย -\frac{8}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{3}\left(-\frac{7}{4}\right)+\frac{2}{3}
ทดแทน -\frac{7}{4} สำหรับ y ใน x=-\frac{1}{3}y+\frac{2}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{7}{12}+\frac{2}{3}
คูณ -\frac{1}{3} ครั้ง -\frac{7}{4} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{5}{4}
เพิ่ม \frac{2}{3} ไปยัง \frac{7}{12} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{5}{4},y=-\frac{7}{4}
ระบบถูกแก้แล้วในขณะนี้
3x+y=2,5x-y=8
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&1\\5&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 2+\frac{1}{8}\times 8\\\frac{5}{8}\times 2-\frac{3}{8}\times 8\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\-\frac{7}{4}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{5}{4},y=-\frac{7}{4}
แยกเมทริกซ์องค์ประกอบ x และ y
3x+y=2,5x-y=8
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5\times 3x+5y=5\times 2,3\times 5x+3\left(-1\right)y=3\times 8
เพื่อทำให้ 3x และ 5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
15x+5y=10,15x-3y=24
ทำให้ง่ายขึ้น
15x-15x+5y+3y=10-24
ลบ 15x-3y=24 จาก 15x+5y=10 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
5y+3y=10-24
เพิ่ม 15x ไปยัง -15x ตัดพจน์ 15x และ -15x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
8y=10-24
เพิ่ม 5y ไปยัง 3y
8y=-14
เพิ่ม 10 ไปยัง -24
y=-\frac{7}{4}
หารทั้งสองข้างด้วย 8
5x-\left(-\frac{7}{4}\right)=8
ทดแทน -\frac{7}{4} สำหรับ y ใน 5x-y=8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
5x=\frac{25}{4}
ลบ \frac{7}{4} จากทั้งสองข้างของสมการ
x=\frac{5}{4}
หารทั้งสองข้างด้วย 5
x=\frac{5}{4},y=-\frac{7}{4}
ระบบถูกแก้แล้วในขณะนี้