\left\{ \begin{array} { l } { 3 x + y + 2 z = 25 } \\ { x + 3 y + z = 12 } \\ { x + y + z = 7 } \end{array} \right.
หาค่า x, y, z
x = \frac{27}{2} = 13\frac{1}{2} = 13.5
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
z=-9
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y=-3x-2z+25
แก้ 3x+y+2z=25 สำหรับ y
x+3\left(-3x-2z+25\right)+z=12 x-3x-2z+25+z=7
ทดแทน -3x-2z+25 สำหรับ y ในสมการที่สองและที่สาม
x=-\frac{5}{8}z+\frac{63}{8} z=-2x+18
แก้สมการเหล่านี้สำหรับ x และ z ตามลำดับ
z=-2\left(-\frac{5}{8}z+\frac{63}{8}\right)+18
ทดแทน -\frac{5}{8}z+\frac{63}{8} สำหรับ x ในอีกสมการหนึ่ง z=-2x+18
z=-9
แก้ z=-2\left(-\frac{5}{8}z+\frac{63}{8}\right)+18 สำหรับ z
x=-\frac{5}{8}\left(-9\right)+\frac{63}{8}
ทดแทน -9 สำหรับ z ในอีกสมการหนึ่ง x=-\frac{5}{8}z+\frac{63}{8}
x=\frac{27}{2}
คำนวณ x จาก x=-\frac{5}{8}\left(-9\right)+\frac{63}{8}
y=-3\times \frac{27}{2}-2\left(-9\right)+25
ทดแทน \frac{27}{2} สำหรับ x และ -9 สำหรับ z ในสมการ y=-3x-2z+25
y=\frac{5}{2}
คำนวณ y จาก y=-3\times \frac{27}{2}-2\left(-9\right)+25
x=\frac{27}{2} y=\frac{5}{2} z=-9
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}