\left\{ \begin{array} { l } { 3 x + 2 y = 7 } \\ { 2 x - y = 7 } \end{array} \right.
หาค่า x, y
x=3
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x+2y=7,2x-y=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+2y=7
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-2y+7
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-2y+7\right)
หารทั้งสองข้างด้วย 3
x=-\frac{2}{3}y+\frac{7}{3}
คูณ \frac{1}{3} ด้วย -2y+7
2\left(-\frac{2}{3}y+\frac{7}{3}\right)-y=7
ทดแทน \frac{-2y+7}{3} สำหรับ x ในอีกสมการหนึ่ง 2x-y=7
-\frac{4}{3}y+\frac{14}{3}-y=7
คูณ 2 ด้วย \frac{-2y+7}{3}
-\frac{7}{3}y+\frac{14}{3}=7
เพิ่ม -\frac{4y}{3} ไปยัง -y
-\frac{7}{3}y=\frac{7}{3}
ลบ \frac{14}{3} จากทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างของสมการด้วย -\frac{7}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{2}{3}\left(-1\right)+\frac{7}{3}
ทดแทน -1 สำหรับ y ใน x=-\frac{2}{3}y+\frac{7}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{2+7}{3}
คูณ -\frac{2}{3} ด้วย -1
x=3
เพิ่ม \frac{7}{3} ไปยัง \frac{2}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=-1
ระบบถูกแก้แล้วในขณะนี้
3x+2y=7,2x-y=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&2\\2&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2\times 2}&-\frac{2}{3\left(-1\right)-2\times 2}\\-\frac{2}{3\left(-1\right)-2\times 2}&\frac{3}{3\left(-1\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 7+\frac{2}{7}\times 7\\\frac{2}{7}\times 7-\frac{3}{7}\times 7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
3x+2y=7,2x-y=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2\times 3x+2\times 2y=2\times 7,3\times 2x+3\left(-1\right)y=3\times 7
เพื่อทำให้ 3x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
6x+4y=14,6x-3y=21
ทำให้ง่ายขึ้น
6x-6x+4y+3y=14-21
ลบ 6x-3y=21 จาก 6x+4y=14 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y+3y=14-21
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
7y=14-21
เพิ่ม 4y ไปยัง 3y
7y=-7
เพิ่ม 14 ไปยัง -21
y=-1
หารทั้งสองข้างด้วย 7
2x-\left(-1\right)=7
ทดแทน -1 สำหรับ y ใน 2x-y=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x=6
ลบ 1 จากทั้งสองข้างของสมการ
x=3
หารทั้งสองข้างด้วย 2
x=3,y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}