ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x-y=3,x-y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=y+3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(y+3\right)
หารทั้งสองข้างด้วย 2
x=\frac{1}{2}y+\frac{3}{2}
คูณ \frac{1}{2} ด้วย y+3
\frac{1}{2}y+\frac{3}{2}-y=-1
ทดแทน \frac{3+y}{2} สำหรับ x ในอีกสมการหนึ่ง x-y=-1
-\frac{1}{2}y+\frac{3}{2}=-1
เพิ่ม \frac{y}{2} ไปยัง -y
-\frac{1}{2}y=-\frac{5}{2}
ลบ \frac{3}{2} จากทั้งสองข้างของสมการ
y=5
คูณทั้งสองข้างด้วย -2
x=\frac{1}{2}\times 5+\frac{3}{2}
ทดแทน 5 สำหรับ y ใน x=\frac{1}{2}y+\frac{3}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{5+3}{2}
คูณ \frac{1}{2} ด้วย 5
x=4
เพิ่ม \frac{3}{2} ไปยัง \frac{5}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=4,y=5
ระบบถูกแก้แล้วในขณะนี้
2x-y=3,x-y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-\left(-1\right)\\3-2\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=4,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
2x-y=3,x-y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x-x-y+y=3+1
ลบ x-y=-1 จาก 2x-y=3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2x-x=3+1
เพิ่ม -y ไปยัง y ตัดพจน์ -y และ y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
x=3+1
เพิ่ม 2x ไปยัง -x
x=4
เพิ่ม 3 ไปยัง 1
4-y=-1
ทดแทน 4 สำหรับ x ใน x-y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
-y=-5
ลบ 4 จากทั้งสองข้างของสมการ
x=4,y=5
ระบบถูกแก้แล้วในขณะนี้