ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x-y=3,3x+4y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=y+3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(y+3\right)
หารทั้งสองข้างด้วย 2
x=\frac{1}{2}y+\frac{3}{2}
คูณ \frac{1}{2} ด้วย y+3
3\left(\frac{1}{2}y+\frac{3}{2}\right)+4y=2
ทดแทน \frac{3+y}{2} สำหรับ x ในอีกสมการหนึ่ง 3x+4y=2
\frac{3}{2}y+\frac{9}{2}+4y=2
คูณ 3 ด้วย \frac{3+y}{2}
\frac{11}{2}y+\frac{9}{2}=2
เพิ่ม \frac{3y}{2} ไปยัง 4y
\frac{11}{2}y=-\frac{5}{2}
ลบ \frac{9}{2} จากทั้งสองข้างของสมการ
y=-\frac{5}{11}
หารทั้งสองข้างของสมการด้วย \frac{11}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{1}{2}\left(-\frac{5}{11}\right)+\frac{3}{2}
ทดแทน -\frac{5}{11} สำหรับ y ใน x=\frac{1}{2}y+\frac{3}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{5}{22}+\frac{3}{2}
คูณ \frac{1}{2} ครั้ง -\frac{5}{11} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{14}{11}
เพิ่ม \frac{3}{2} ไปยัง -\frac{5}{22} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{14}{11},y=-\frac{5}{11}
ระบบถูกแก้แล้วในขณะนี้
2x-y=3,3x+4y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-1\\3&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\right)}&-\frac{-1}{2\times 4-\left(-3\right)}\\-\frac{3}{2\times 4-\left(-3\right)}&\frac{2}{2\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 3+\frac{1}{11}\times 2\\-\frac{3}{11}\times 3+\frac{2}{11}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{11}\\-\frac{5}{11}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{14}{11},y=-\frac{5}{11}
แยกเมทริกซ์องค์ประกอบ x และ y
2x-y=3,3x+4y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3\left(-1\right)y=3\times 3,2\times 3x+2\times 4y=2\times 2
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x-3y=9,6x+8y=4
ทำให้ง่ายขึ้น
6x-6x-3y-8y=9-4
ลบ 6x+8y=4 จาก 6x-3y=9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y-8y=9-4
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-11y=9-4
เพิ่ม -3y ไปยัง -8y
-11y=5
เพิ่ม 9 ไปยัง -4
y=-\frac{5}{11}
หารทั้งสองข้างด้วย -11
3x+4\left(-\frac{5}{11}\right)=2
ทดแทน -\frac{5}{11} สำหรับ y ใน 3x+4y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x-\frac{20}{11}=2
คูณ 4 ด้วย -\frac{5}{11}
3x=\frac{42}{11}
เพิ่ม \frac{20}{11} ไปยังทั้งสองข้างของสมการ
x=\frac{14}{11}
หารทั้งสองข้างด้วย 3
x=\frac{14}{11},y=-\frac{5}{11}
ระบบถูกแก้แล้วในขณะนี้