\left\{ \begin{array} { l } { 2 x + 5 y = 13 } \\ { x + 7 y = - 17 } \end{array} \right.
หาค่า x, y
x = \frac{176}{9} = 19\frac{5}{9} \approx 19.555555556
y = -\frac{47}{9} = -5\frac{2}{9} \approx -5.222222222
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+5y=13,x+7y=-17
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+5y=13
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-5y+13
ลบ 5y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-5y+13\right)
หารทั้งสองข้างด้วย 2
x=-\frac{5}{2}y+\frac{13}{2}
คูณ \frac{1}{2} ด้วย -5y+13
-\frac{5}{2}y+\frac{13}{2}+7y=-17
ทดแทน \frac{-5y+13}{2} สำหรับ x ในอีกสมการหนึ่ง x+7y=-17
\frac{9}{2}y+\frac{13}{2}=-17
เพิ่ม -\frac{5y}{2} ไปยัง 7y
\frac{9}{2}y=-\frac{47}{2}
ลบ \frac{13}{2} จากทั้งสองข้างของสมการ
y=-\frac{47}{9}
หารทั้งสองข้างของสมการด้วย \frac{9}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{5}{2}\left(-\frac{47}{9}\right)+\frac{13}{2}
ทดแทน -\frac{47}{9} สำหรับ y ใน x=-\frac{5}{2}y+\frac{13}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{235}{18}+\frac{13}{2}
คูณ -\frac{5}{2} ครั้ง -\frac{47}{9} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{176}{9}
เพิ่ม \frac{13}{2} ไปยัง \frac{235}{18} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{176}{9},y=-\frac{47}{9}
ระบบถูกแก้แล้วในขณะนี้
2x+5y=13,x+7y=-17
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-17\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&5\\1&7\end{matrix}\right))\left(\begin{matrix}2&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&7\end{matrix}\right))\left(\begin{matrix}13\\-17\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&5\\1&7\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&7\end{matrix}\right))\left(\begin{matrix}13\\-17\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&7\end{matrix}\right))\left(\begin{matrix}13\\-17\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-5}&-\frac{5}{2\times 7-5}\\-\frac{1}{2\times 7-5}&\frac{2}{2\times 7-5}\end{matrix}\right)\left(\begin{matrix}13\\-17\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{9}&-\frac{5}{9}\\-\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}13\\-17\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{9}\times 13-\frac{5}{9}\left(-17\right)\\-\frac{1}{9}\times 13+\frac{2}{9}\left(-17\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{176}{9}\\-\frac{47}{9}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{176}{9},y=-\frac{47}{9}
แยกเมทริกซ์องค์ประกอบ x และ y
2x+5y=13,x+7y=-17
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+5y=13,2x+2\times 7y=2\left(-17\right)
เพื่อทำให้ 2x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
2x+5y=13,2x+14y=-34
ทำให้ง่ายขึ้น
2x-2x+5y-14y=13+34
ลบ 2x+14y=-34 จาก 2x+5y=13 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
5y-14y=13+34
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-9y=13+34
เพิ่ม 5y ไปยัง -14y
-9y=47
เพิ่ม 13 ไปยัง 34
y=-\frac{47}{9}
หารทั้งสองข้างด้วย -9
x+7\left(-\frac{47}{9}\right)=-17
ทดแทน -\frac{47}{9} สำหรับ y ใน x+7y=-17 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x-\frac{329}{9}=-17
คูณ 7 ด้วย -\frac{47}{9}
x=\frac{176}{9}
เพิ่ม \frac{329}{9} ไปยังทั้งสองข้างของสมการ
x=\frac{176}{9},y=-\frac{47}{9}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}