\left\{ \begin{array} { l } { 2 p + ( 1 ) q - 3 t = ( 4 ) } \\ { ( - 1 ) p - q + ( 1 ) t = - 3 } \\ { ( - 2 ) p - ( - 6 ) q - 5 t = ( - 7 ) } \end{array} \right.
หาค่า p, q, t
t = \frac{17}{15} = 1\frac{2}{15} \approx 1.133333333
p = \frac{49}{15} = 3\frac{4}{15} \approx 3.266666667
q=\frac{13}{15}\approx 0.866666667
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-p-q+1t=-3 2p+1q-3t=4 -2p-\left(-6q\right)-5t=-7
จัดลำดับสมการใหม่
p=-q+t+3
แก้ -p-q+1t=-3 สำหรับ p
2\left(-q+t+3\right)+1q-3t=4 -2\left(-q+t+3\right)-\left(-6q\right)-5t=-7
ทดแทน -q+t+3 สำหรับ p ในสมการที่สองและที่สาม
q=2-t t=\frac{8}{7}q+\frac{1}{7}
แก้สมการเหล่านี้สำหรับ q และ t ตามลำดับ
t=\frac{8}{7}\left(2-t\right)+\frac{1}{7}
ทดแทน 2-t สำหรับ q ในอีกสมการหนึ่ง t=\frac{8}{7}q+\frac{1}{7}
t=\frac{17}{15}
แก้ t=\frac{8}{7}\left(2-t\right)+\frac{1}{7} สำหรับ t
q=2-\frac{17}{15}
ทดแทน \frac{17}{15} สำหรับ t ในอีกสมการหนึ่ง q=2-t
q=\frac{13}{15}
คำนวณ q จาก q=2-\frac{17}{15}
p=-\frac{13}{15}+\frac{17}{15}+3
ทดแทน \frac{13}{15} สำหรับ q และ \frac{17}{15} สำหรับ t ในสมการ p=-q+t+3
p=\frac{49}{15}
คำนวณ p จาก p=-\frac{13}{15}+\frac{17}{15}+3
p=\frac{49}{15} q=\frac{13}{15} t=\frac{17}{15}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}