ข้ามไปที่เนื้อหาหลัก
หาค่า a, b
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=12
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
6a+b=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
a+b=12,6a+b=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
a+b=12
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ a โดยแยก a ทางด้านซ้ายของเครื่องหมายเท่ากับ
a=-b+12
ลบ b จากทั้งสองข้างของสมการ
6\left(-b+12\right)+b=2
ทดแทน -b+12 สำหรับ a ในอีกสมการหนึ่ง 6a+b=2
-6b+72+b=2
คูณ 6 ด้วย -b+12
-5b+72=2
เพิ่ม -6b ไปยัง b
-5b=-70
ลบ 72 จากทั้งสองข้างของสมการ
b=14
หารทั้งสองข้างด้วย -5
a=-14+12
ทดแทน 14 สำหรับ b ใน a=-b+12 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า a โดยตรงได้
a=-2
เพิ่ม 12 ไปยัง -14
a=-2,b=14
ระบบถูกแก้แล้วในขณะนี้
a+b=12
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
6a+b=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
a+b=12,6a+b=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}12\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\6&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{1}{1-6}\\-\frac{6}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{6}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 12+\frac{1}{5}\times 2\\\frac{6}{5}\times 12-\frac{1}{5}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\14\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
a=-2,b=14
แยกเมทริกซ์องค์ประกอบ a และ b
a+b=12
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
6a+b=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
a+b=12,6a+b=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
a-6a+b-b=12-2
ลบ 6a+b=2 จาก a+b=12 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
a-6a=12-2
เพิ่ม b ไปยัง -b ตัดพจน์ b และ -b ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5a=12-2
เพิ่ม a ไปยัง -6a
-5a=10
เพิ่ม 12 ไปยัง -2
a=-2
หารทั้งสองข้างด้วย -5
6\left(-2\right)+b=2
ทดแทน -2 สำหรับ a ใน 6a+b=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า b โดยตรงได้
-12+b=2
คูณ 6 ด้วย -2
b=14
เพิ่ม 12 ไปยังทั้งสองข้างของสมการ
a=-2,b=14
ระบบถูกแก้แล้วในขณะนี้