ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

-3x+5y=1,4x-y=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-3x+5y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-3x=-5y+1
ลบ 5y จากทั้งสองข้างของสมการ
x=-\frac{1}{3}\left(-5y+1\right)
หารทั้งสองข้างด้วย -3
x=\frac{5}{3}y-\frac{1}{3}
คูณ -\frac{1}{3} ด้วย -5y+1
4\left(\frac{5}{3}y-\frac{1}{3}\right)-y=10
ทดแทน \frac{5y-1}{3} สำหรับ x ในอีกสมการหนึ่ง 4x-y=10
\frac{20}{3}y-\frac{4}{3}-y=10
คูณ 4 ด้วย \frac{5y-1}{3}
\frac{17}{3}y-\frac{4}{3}=10
เพิ่ม \frac{20y}{3} ไปยัง -y
\frac{17}{3}y=\frac{34}{3}
เพิ่ม \frac{4}{3} ไปยังทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างของสมการด้วย \frac{17}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{5}{3}\times 2-\frac{1}{3}
ทดแทน 2 สำหรับ y ใน x=\frac{5}{3}y-\frac{1}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{10-1}{3}
คูณ \frac{5}{3} ด้วย 2
x=3
เพิ่ม -\frac{1}{3} ไปยัง \frac{10}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=2
ระบบถูกแก้แล้วในขณะนี้
-3x+5y=1,4x-y=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-5\times 4}&-\frac{5}{-3\left(-1\right)-5\times 4}\\-\frac{4}{-3\left(-1\right)-5\times 4}&-\frac{3}{-3\left(-1\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{5}{17}\\\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{5}{17}\times 10\\\frac{4}{17}+\frac{3}{17}\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
-3x+5y=1,4x-y=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\left(-3\right)x+4\times 5y=4,-3\times 4x-3\left(-1\right)y=-3\times 10
เพื่อทำให้ -3x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -3
-12x+20y=4,-12x+3y=-30
ทำให้ง่ายขึ้น
-12x+12x+20y-3y=4+30
ลบ -12x+3y=-30 จาก -12x+20y=4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
20y-3y=4+30
เพิ่ม -12x ไปยัง 12x ตัดพจน์ -12x และ 12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
17y=4+30
เพิ่ม 20y ไปยัง -3y
17y=34
เพิ่ม 4 ไปยัง 30
y=2
หารทั้งสองข้างด้วย 17
4x-2=10
ทดแทน 2 สำหรับ y ใน 4x-y=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x=12
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=3
หารทั้งสองข้างด้วย 4
x=3,y=2
ระบบถูกแก้แล้วในขณะนี้