ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x+y=-2
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
-7x+y=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
3x+y=-2,-7x+y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+y=-2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-y-2
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-y-2\right)
หารทั้งสองข้างด้วย 3
x=-\frac{1}{3}y-\frac{2}{3}
คูณ \frac{1}{3} ด้วย -y-2
-7\left(-\frac{1}{3}y-\frac{2}{3}\right)+y=2
ทดแทน \frac{-y-2}{3} สำหรับ x ในอีกสมการหนึ่ง -7x+y=2
\frac{7}{3}y+\frac{14}{3}+y=2
คูณ -7 ด้วย \frac{-y-2}{3}
\frac{10}{3}y+\frac{14}{3}=2
เพิ่ม \frac{7y}{3} ไปยัง y
\frac{10}{3}y=-\frac{8}{3}
ลบ \frac{14}{3} จากทั้งสองข้างของสมการ
y=-\frac{4}{5}
หารทั้งสองข้างของสมการด้วย \frac{10}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{3}\left(-\frac{4}{5}\right)-\frac{2}{3}
ทดแทน -\frac{4}{5} สำหรับ y ใน x=-\frac{1}{3}y-\frac{2}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{4}{15}-\frac{2}{3}
คูณ -\frac{1}{3} ครั้ง -\frac{4}{5} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=-\frac{2}{5}
เพิ่ม -\frac{2}{3} ไปยัง \frac{4}{15} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=-\frac{2}{5},y=-\frac{4}{5}
ระบบถูกแก้แล้วในขณะนี้
3x+y=-2
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
-7x+y=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
3x+y=-2,-7x+y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&1\\-7&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-7\right)}&-\frac{1}{3-\left(-7\right)}\\-\frac{-7}{3-\left(-7\right)}&\frac{3}{3-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{10}\\\frac{7}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-2\right)-\frac{1}{10}\times 2\\\frac{7}{10}\left(-2\right)+\frac{3}{10}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\-\frac{4}{5}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{2}{5},y=-\frac{4}{5}
แยกเมทริกซ์องค์ประกอบ x และ y
3x+y=-2
พิจารณาสมการแรก สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
-7x+y=2
พิจารณาสมการที่สอง สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
3x+y=-2,-7x+y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x+7x+y-y=-2-2
ลบ -7x+y=2 จาก 3x+y=-2 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x+7x=-2-2
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
10x=-2-2
เพิ่ม 3x ไปยัง 7x
10x=-4
เพิ่ม -2 ไปยัง -2
x=-\frac{2}{5}
หารทั้งสองข้างด้วย 10
-7\left(-\frac{2}{5}\right)+y=2
ทดแทน -\frac{2}{5} สำหรับ x ใน -7x+y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
\frac{14}{5}+y=2
คูณ -7 ด้วย -\frac{2}{5}
y=-\frac{4}{5}
ลบ \frac{14}{5} จากทั้งสองข้างของสมการ
x=-\frac{2}{5},y=-\frac{4}{5}
ระบบถูกแก้แล้วในขณะนี้