\left\{ \begin{array} { l } { - 10 x - 3 y = 9 } \\ { - 5 x + 5 y = - 2 } \end{array} \right.
หาค่า x, y
x=-\frac{3}{5}=-0.6
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-10x-3y=9,-5x+5y=-2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-10x-3y=9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-10x=3y+9
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
x=-\frac{1}{10}\left(3y+9\right)
หารทั้งสองข้างด้วย -10
x=-\frac{3}{10}y-\frac{9}{10}
คูณ -\frac{1}{10} ด้วย 9+3y
-5\left(-\frac{3}{10}y-\frac{9}{10}\right)+5y=-2
ทดแทน \frac{-3y-9}{10} สำหรับ x ในอีกสมการหนึ่ง -5x+5y=-2
\frac{3}{2}y+\frac{9}{2}+5y=-2
คูณ -5 ด้วย \frac{-3y-9}{10}
\frac{13}{2}y+\frac{9}{2}=-2
เพิ่ม \frac{3y}{2} ไปยัง 5y
\frac{13}{2}y=-\frac{13}{2}
ลบ \frac{9}{2} จากทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างของสมการด้วย \frac{13}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{3}{10}\left(-1\right)-\frac{9}{10}
ทดแทน -1 สำหรับ y ใน x=-\frac{3}{10}y-\frac{9}{10} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{3-9}{10}
คูณ -\frac{3}{10} ด้วย -1
x=-\frac{3}{5}
เพิ่ม -\frac{9}{10} ไปยัง \frac{3}{10} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=-\frac{3}{5},y=-1
ระบบถูกแก้แล้วในขณะนี้
-10x-3y=9,-5x+5y=-2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{-3}{-10\times 5-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{10}{-10\times 5-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{3}{65}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 9-\frac{3}{65}\left(-2\right)\\-\frac{1}{13}\times 9+\frac{2}{13}\left(-2\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{3}{5},y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
-10x-3y=9,-5x+5y=-2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-5\left(-10\right)x-5\left(-3\right)y=-5\times 9,-10\left(-5\right)x-10\times 5y=-10\left(-2\right)
เพื่อทำให้ -10x และ -5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -10
50x+15y=-45,50x-50y=20
ทำให้ง่ายขึ้น
50x-50x+15y+50y=-45-20
ลบ 50x-50y=20 จาก 50x+15y=-45 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
15y+50y=-45-20
เพิ่ม 50x ไปยัง -50x ตัดพจน์ 50x และ -50x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
65y=-45-20
เพิ่ม 15y ไปยัง 50y
65y=-65
เพิ่ม -45 ไปยัง -20
y=-1
หารทั้งสองข้างด้วย 65
-5x+5\left(-1\right)=-2
ทดแทน -1 สำหรับ y ใน -5x+5y=-2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-5x-5=-2
คูณ 5 ด้วย -1
-5x=3
เพิ่ม 5 ไปยังทั้งสองข้างของสมการ
x=-\frac{3}{5}
หารทั้งสองข้างด้วย -5
x=-\frac{3}{5},y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}