ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
หาอนุพันธ์ของ w.r.t. x
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} เพื่อขยาย \left(x+5\right)^{3}
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x ด้วย x^{3}+15x^{2}+75x+125
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
รวมผลรวมทีละพจน์
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
แยกตัวประกอบค่าคงที่ในแต่ละพจน์
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{4}\mathrm{d}x ด้วย \frac{x^{5}}{5}
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{3}\mathrm{d}x ด้วย \frac{x^{4}}{4} คูณ 15 ด้วย \frac{x^{4}}{4}
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{2}\mathrm{d}x ด้วย \frac{x^{3}}{3} คูณ 75 ด้วย \frac{x^{3}}{3}
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x\mathrm{d}x ด้วย \frac{x^{2}}{2} คูณ 125 ด้วย \frac{x^{2}}{2}
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
ทำให้ง่ายขึ้น
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
ถ้า F\left(x\right) เป็น antiderivative ของ f\left(x\right) จากนั้นชุดของ f\left(x\right) antiderivatives ทั้งหมดที่ได้รับมาจาก F\left(x\right)+C ดังนั้นให้เพิ่มค่าคงที่ของการรวม C\in \mathrm{R} ลงในผลลัพธ์