หาค่า
\frac{1}{3}\approx 0.333333333
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\int _{0}^{1}x^{2}-2x+1\mathrm{d}x
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{2}=a^{2}-2ab+b^{2} เพื่อขยาย \left(x-1\right)^{2}
\int x^{2}-2x+1\mathrm{d}x
หาค่าปริพันธ์ที่ไม่จำกัดก่อน
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
รวมผลรวมทีละพจน์
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
แยกตัวประกอบค่าคงที่ในแต่ละพจน์
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{2}\mathrm{d}x ด้วย \frac{x^{3}}{3}
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x\mathrm{d}x ด้วย \frac{x^{2}}{2} คูณ -2 ด้วย \frac{x^{2}}{2}
\frac{x^{3}}{3}-x^{2}+x
ค้นหาอินทิกรัลของ 1 โดยใช้ \int a\mathrm{d}x=ax ของกฎอินทิกรัลทั่วไป
\frac{1^{3}}{3}-1^{2}+1-\left(\frac{0^{3}}{3}-0^{2}+0\right)
อินทิกรัล definite เป็น antiderivative ของนิพจน์ที่ประเมินที่ขีดจำกัดสูงสุดของการรวมข้อมูลลบ antiderivative ที่ประเมินเมื่อขีดจำกัดล่างของการรวม
\frac{1}{3}
ทำให้ง่ายขึ้น
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}