ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
หาอนุพันธ์ของ w.r.t. x
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\int \left(x^{3}-3x^{2}+3x-1\right)\left(x-2\right)\mathrm{d}x
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} เพื่อขยาย \left(x-1\right)^{3}
\int x^{4}-5x^{3}+9x^{2}-7x+2\mathrm{d}x
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x^{3}-3x^{2}+3x-1 ด้วย x-2 และรวมพจน์ที่เหมือนกัน
\int x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 2\mathrm{d}x
รวมผลรวมทีละพจน์
\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
แยกตัวประกอบค่าคงที่ในแต่ละพจน์
\frac{x^{5}}{5}-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{4}\mathrm{d}x ด้วย \frac{x^{5}}{5}
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{3}\mathrm{d}x ด้วย \frac{x^{4}}{4} คูณ -5 ด้วย \frac{x^{4}}{4}
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-7\int x\mathrm{d}x+\int 2\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{2}\mathrm{d}x ด้วย \frac{x^{3}}{3} คูณ 9 ด้วย \frac{x^{3}}{3}
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+\int 2\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x\mathrm{d}x ด้วย \frac{x^{2}}{2} คูณ -7 ด้วย \frac{x^{2}}{2}
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x
ค้นหาอินทิกรัลของ 2 โดยใช้ \int a\mathrm{d}x=ax ของกฎอินทิกรัลทั่วไป
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}
ทำให้ง่ายขึ้น
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}+С
ถ้า F\left(x\right) เป็น antiderivative ของ f\left(x\right) จากนั้นชุดของ f\left(x\right) antiderivatives ทั้งหมดที่ได้รับมาจาก F\left(x\right)+C ดังนั้นให้เพิ่มค่าคงที่ของการรวม C\in \mathrm{R} ลงในผลลัพธ์