ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
หาอนุพันธ์ของ w.r.t. x
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} เพื่อขยาย \left(x^{2}+2\right)^{3}
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน คูณ 2 กับ 3 ให้ได้ 6
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน คูณ 2 กับ 2 ให้ได้ 4
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
รวมผลรวมทีละพจน์
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
แยกตัวประกอบค่าคงที่ในแต่ละพจน์
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{6}\mathrm{d}x ด้วย \frac{x^{7}}{7}
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{4}\mathrm{d}x ด้วย \frac{x^{5}}{5} คูณ 6 ด้วย \frac{x^{5}}{5}
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
เนื่องจาก \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} สำหรับ k\neq -1 ให้แทนที่ \int x^{2}\mathrm{d}x ด้วย \frac{x^{3}}{3} คูณ 12 ด้วย \frac{x^{3}}{3}
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
ค้นหาอินทิกรัลของ 8 โดยใช้ \int a\mathrm{d}x=ax ของกฎอินทิกรัลทั่วไป
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
ทำให้ง่ายขึ้น
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
ถ้า F\left(x\right) เป็น antiderivative ของ f\left(x\right) จากนั้นชุดของ f\left(x\right) antiderivatives ทั้งหมดที่ได้รับมาจาก F\left(x\right)+C ดังนั้นให้เพิ่มค่าคงที่ของการรวม C\in \mathrm{R} ลงในผลลัพธ์